知识增强的时间序列异常检测算法自动选择
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP311

基金项目:

智能电网重大专项(2030) (2024ZD0802900)


Knowledge-enhanced Automatic Selection for Time Series Anomaly Detection Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    时间序列异常检测技术在许多实际应用中发挥着重要作用. 例如, 云原生数据库系统通过监测关键指标 (如CPU和内存使用情况) 实现系统故障的及时识别. 尽管近年来已经提出了许多先进的时间序列异常检测算法, 但研究表明, 在异常检测准确率方面, 不同算法擅于应对不同的应用场景, 没有通用的最佳方法. 因此, 为了实现更高的异常检测准确率, 研究如何基于不同场景的数据特征自动选择最佳时间序列异常检测算法的问题尤为重要. 现有方法通常基于时间序列分类 (TSC) 技术来解决这一问题. 实现方法是利用历史任务积累的数据, 以时间序列为输入、对应的最准确异常检测算法为输出训练分类器, 从而预测未知时间序列的最佳异常检测算法. 尽管这类基于TSC的解决方案能有效提高异常检测准确率, 但现有的标准TSC算法未能充分利用来自异常检测历史任务的知识. 为弥补这一缺陷, 提出一个知识增强的时间序列异常检测框架. 在训练TSC模型时, 不仅使用现有方法普遍采用的、代表每个历史时间序列最佳检测算法的硬标签, 还利用历史数据上所有候选算法的准确率来估计输入时间序列的类别分布, 将其作为软标签来为算法选择器 (即TSC模型) 提供更多关于异常检测算法之间相互关系的知识. 与此同时, 设计了一个外部知识融合模块, 可以灵活地将各类外部知识 (例如时间序列的应用领域及数据与异常特点的描述) 融入TSC模型中. 所提方法能够作为插件无缝集成到任意架构的TSC模型中, 提高其在异常检测算法选择方面的性能. 在多种类型的时间序列数据集上进行大量实验, 验证所提方法的有效性.

    Abstract:

    Time series anomaly detection plays an important role in many real-world applications, such as monitoring key metrics (e.g., CPU and memory usage) in cloud-native database systems to detect system failures timely. Although many advanced time series anomaly detection algorithms have been proposed in recent years, it has been shown that different algorithms excel in different application scenarios in terms of anomaly detection accuracy, and there is no universally optimal method. Therefore, studying the problem of automatically selecting the most suitable time series anomaly detection algorithm based on the data characteristics of various scenarios is crucial to achieving higher detection accuracy. Existing studies typically address this problem using time series classification (TSC) techniques, training a classifier on data from historical tasks, where the input is a time series, and the output is the predicted most accurate anomaly detection algorithm for that time series. Although TSC-based solutions improve detection accuracy, existing standard TSC algorithms fail to fully utilize the knowledge from historical anomaly detection tasks. This study proposes a knowledge-enhanced time series anomaly detection framework. Specifically, in addition to training the TSC model with hard labels that represent the best detection algorithm for each historical time series, the accuracy of all candidate algorithms evaluated on historical data is used to estimate the class distribution of the input time series. The distribution is treated as a soft label, providing the algorithm selector (i.e., the TSC model) with more knowledge about the relationships between the anomaly detection algorithms. Meanwhile, a module is designed to flexibly integrate various types of external knowledge (e.g., descriptions of the domain, characteristics of time series, and anomalies) into the TSC model. The proposed method is designed as a plugin that can be seamlessly integrated into any TSC model to enhance its performance in anomaly detection algorithm selection, regardless of the model architecture. Extensive experiments on various types of time series datasets validate the effectiveness of this approach.

    参考文献
    相似文献
    引证文献
引用本文

梁志宇,蔡东芮,梁晨,梁峥,王宏志,郑博.知识增强的时间序列异常检测算法自动选择.软件学报,,():1-18

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-06
  • 最后修改日期:2025-04-28
  • 录用日期:
  • 在线发布日期: 2025-12-03
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号