卫星边缘计算智能化技术研究进展
作者:
中图分类号:

TP393

基金项目:

国家自然科学基金(62032003, 62372061, 62425203, U21B2016); 中央高校基本科研业务费专项资金(2024ZCJH11)


Research Progress on Intelligent Technologies for Satellite Edge Computing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [87]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    近年来, 随着太空任务的日益复杂化, 太空数据呈现爆炸式增长. 然而, 受限于星地链路带宽限制和稀缺的频谱资源, 传统弯管架构在星地数据传输中遭遇瓶颈. 此外, 星上数据必须等待卫星经过地面站上空才能下传, 而大规模建设地面站不仅成本高昂, 还面临地缘政治风险和经济收益的不确定性. 卫星边缘计算作为一种有效的解决方案, 通过在卫星边缘引入移动边缘计算技术, 能够显著提升用户体验, 同时有效减少网络冗余流量. 在轨处理星上原始数据不仅缩短了数据获取时间, 还减少了对地面站的依赖. 此外, 卫星边缘计算结合人工智能技术, 为应对当前挑战提供了高效且充满潜力的解决方案. 综述卫星边缘计算智能化技术的研究现状: 首先探讨其在多个典型场景下的需求与应用; 随后分析该领域的关键挑战和研究进展; 最后归纳若干开放性研究课题, 并提出可借鉴的新思路. 期望通过讨论, 为推动卫星边缘计算智能化技术创新与实际应用提供有价值的参考.

    Abstract:

    In recent years, the increasing complexity of space missions has led to an exponential growth in space-generated data. However, limited satellites-to-ground bandwidth and scarce frequency resources pose significant challenges to traditional bent-pipe architecture, which faces severe transmission bottlenecks. In addition, onboard data must wait for satellites to pass over ground stations before transmission. The large-scale construction of ground stations is not only cost-prohibitive but also carries geopolitical and economic risks. Satellite edge computing has emerged as a promising solution to these bottlenecks by integrating mobile edge computing technology into satellite edges. This approach significantly enhances user experience and reduces redundant network traffic. By enabling onboard data processing, satellite edge computing shortens data acquisition times and reduces reliance on extensive ground station infrastructure. Furthermore, the integration of artificial intelligence (AI) and edge computing technologies offers an efficient and forward-looking path to address existing challenges. This study reviews the latest progress in intelligent satellite edge computing. First, the demands and applications of satellite edge computing in various typical scenarios are discussed. Next, key challenges and recent research advancements in this field are analyzed. Finally, several open research topics are highlighted, and new ideas are proposed to guide future studies. This discussion aims to provide valuable insights to promote technological innovation and the practical implementation of satellite edge computing.

    参考文献
    [1] World Meteorological Organization. Weather-related disasters increase over past 50 years, causing more damage but fewer deaths. 2021. https://wmo.int/media/news/weather-related-disasters-increase-over-past-50-years-causing-more-damage-fewer-deaths
    [2] Wang SG, Li Q. Satellite computing: Vision and challenges. IEEE Internet of Things Journal, 2023, 10(24): 22514–22529.
    [3] Earth Observation Center. 60 petabytes for the German satellite data archive D-SDA. 2018. https://www.dlr.de/en/eoc/latest/news/2018/60-petabytes-for-the-german-satellite-data-archive-d-sda
    [4] Lucia B, Denby B, Manchester Z, Desai H, Ruppel E, Colin A. Computational nanosatellite constellations: Opportunities and challenges. GetMobile: Mobile Computing and Communications, 2021, 25(1): 16–23.
    [5] Xu MW, Fu Z, Ma X, Zhang L, Li YN, Qian F, Wang SG, Li K, Yang JY, Liu XZ. From cloud to edge: A first look at public edge platforms. In: Proc. of the 21st ACM Internet Measurement Conf. ACM, 2021. 37–53. [doi: 10.1145/3487552.3487815]
    [6] Bhattacherjee D, Kassing S, Licciardello M, Singla A. In-orbit computing: An outlandish thought experiment? In: Proc. of the 19th ACM Workshop on Hot Topics in Networks. ACM, 2020. 197–204. [doi: 10.1145/3422604.3425937]
    [7] Xing RL, Xu MW, Zhou A, Li Q, Zhang YR, Qian F, Wang SG. Deciphering the enigma of satellite computing with COTS devices: Measurement and analysis. In: Proc. of the 30th Annual Int’l Conf. on Mobile Computing and Networking. Washington: ACM, 2024. 420–435. [doi: 10.1145/3636534.3649371]
    [8] Kassem MM, Raman A, Perino D, Sastry N. A browser-side view of Starlink connectivity. In: Proc. of the 22nd ACM Internet Measurement Conf. Nice: ACM, 2022. 151–158. [doi: 10.1145/3517745.3561457]
    [9] Michel F, Trevisan M, Giordano D, Bonaventure O. A first look at Starlink performance. In: Proc. of the 22nd ACM Internet Measurement Conf. Nice: ACM, 2022. 130–136. [doi: 10.1145/3517745.3561416]
    [10] Ma S, Chou Y C, Zhao HY, Chen L, Ma XQ, Liu JC. Network characteristics of LEO satellite constellations: A Starlink-based measurement from end users. In: Proc. of the 2023 IEEE Annual Joint Conf.: INFOCOM, IEEE Computer and Communications Societies. New York: IEEE, 2023. 1–10. [doi: 10.1109/INFOCOM53939.2023.10228912]
    [11] Ye B, Mo LH, Liu T, Sun YM, Liu J. Influence of orbital parameters on SEU rate of low-energy proton in nano-SRAM device. Symmetry, 2020, 12(12): 2030.
    [12] Wang SG, Li Q, Xu MW, Ma X, Zhou A, Sun QB. Tiansuan constellation: An open research platform. In: Proc. of the 2021 IEEE Int’l Conf. on Edge Computing. Chicago: IEEE, 2021. 94–101. [doi: 10.1109/EDGE53862.2021.00022]
    [13] Panagopoulos AD, Arapoglou PDM, Cottis PG. Satellite communications at Ku, Ka, and V bands: Propagation impairments and mitigation techniques. IEEE Communications Surveys & Tutorials, 2004, 6(3): 2–14.
    [14] 九九. 下行速率超过100 Mbps, Starlink真的能取代5G吗? 2022. https://www.51cto.com/article/704582.html
    Jiujiu. Given its downlink rate exceeding 100 Mbps, is Starlink a viable alternative to 5G? 2022. https://www.51cto.com/article/704582.html
    [15] Terrasanta G, Ziarko MW, Bergamasco N, Poot M, Poliak J. Simulating optical single event transients on silicon photonic waveguides for satellite communication. IEEE Trans. on Nuclear Science, 2024, 71(2): 176–183.
    [16] Landauer DC, Lovelly TM. Performance evaluation of the radiation-tolerant NVIDIA Tegra K1 system-on-chip. In: Proc. of the 2023 IEEE Space Computing Conf. Pasadena: IEEE, 2023. 24–33. [doi: 10.1109/SCC57168.2023.00014]
    [17] Li ZQ, Jing XY, Zhu XK, Zhang HY. Heterogeneous defect prediction through multiple kernel learning and ensemble learning. In: Proc. of the 2017 IEEE Int’l Conf. on Software Maintenance and Evolution. Shanghai: IEEE, 2017. 91–102. [doi: 10.1109/ICSME.2017.19]
    [18] El-Hajjar M, Hanzo L. A survey of digital television broadcast transmission techniques. IEEE Communications Surveys & Tutorials, 2013, 15(4): 1924–1949.
    [19] Wang F, Jiang DD, Wang ZH, Chen JG, Quek TQS. Seamless handover in LEO based non-terrestrial networks: Service continuity and optimization. IEEE Trans. on Communications, 2023, 71(2): 1008–1023.
    [20] Zhang QY, Che XY, Chen YJ, Ma X, Xu MW, Dustdar S, Liu XZ, Wang SG. A comprehensive deep learning library benchmark and optimal library selection. IEEE Trans. on Mobile Computing, 2024, 23(5): 5069–5082.
    [21] Huang CY, Ye P, Chen T, He T, Yue XY, Ouyang WL. Emr-merging: Tuning-free high-performance model merging. In: Proc. of the 38th Annual Conf. on Neural Int’l Processing Systems. Vancouver: NeurIPS, 2024. 122741–122769.
    [22] Albashish D, Al-Sayyed R, Abdullah A, Ryalat MH, Almansour NA. Deep CNN model based on VGG16 for breast cancer classification. In: Proc. of the 2021 Int’l Conf. on Information Technology. Amman: IEEE, 2021. 805–810. [doi: 10.1109/ICIT52682.2021.9491631]
    [23] Wu JX, Leng C, Wang YH, Hu QH, Cheng J. Quantized convolutional neural networks for mobile devices. In: Proc. of the 2016 IEEE Conf. on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 4820–4828. [doi: 10.1109/CVPR.2016.521]
    [24] Jacob B, Kligys S, Chen B, Zhu ML, Tang M, Howard A, Adam H, Kalenichenko D. Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: Proc. of the 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 2704–2713. [doi: 10.1109/CVPR.2018.00286]
    [25] Bharati P, Pramanik A. Deep learning techniques—R-CNN to mask R-CNN: A survey. In: Das AK, Nayak J, Naik B, eds. Computational Intelligence in Pattern Recognition. Singapore: Springer, 2020. 657–668. [doi: 10.1007/978-981-13-9042-5_56]
    [26] Girshick R, Jeff D, Trevor D, Jitendra M. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proc. of the 2014 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. 2014. 580–587.
    [27] Yu W, Yang KY, Bai YL, Xiao TJ, Yao HX, Rui Y. Visualizing and comparing AlexNet and VGG using deconvolutional layers. In: Proc. of the 33rd Int’l Conf. on Machine Learning. New York: JMLR, 2016.
    [28] Lin M, Chen C, Lai C. Object detection algorithm based AdaBoost residual correction Fast R-CNN on network. In: Proc. of the 3rd Int’l Conf. on Deep Learning Technologies. 2019. 42–46.
    [29] Fratini S, Policella N, Silva R, Guerreiro J. On-board autonomy operations for OPS-SAT experiment. Applied Intelligence, 2022, 52(6): 6970–6987.
    [30] Verfaillie G, Charmeau MC. A generic modular architecture for the control of an autonomous spacecraft. In: Proc. of the 5th Int’l Workshop on Planning and Scheduling for Space. Baltimore: Space Telescope Science Institute, 2006.
    [31] Van Etten A. You only look twice: Rapid multi-scale object detection in satellite imagery. arXiv:1805.09512, 2018.
    [32] Verfaillie G, Lemaitre M. Tutorial on planning activities for earth watching and observation satellites and constellations: From off-line ground planning to on-line on-board planning. 2006. https://icaps06.icapsconference.org/preprints/i06-tu5-allpapers.pdf
    [33] Bensana E, Verfaillie G, Agnese JC, Bataille N, Blumestein D. Exact and inexact methods for the daily management of an earth observation satellite. In: Proc. of the 1996 Int’l Symp. on Space Mission Operations and Ground Data Systems. 1996. 494: 507.
    [34] Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. SqueezeNet: AlexNet-level accuracy with 50× fewer parameters and <0.5 MB model size. In: Proc. of the 5th Int’l Conf. on Learning Representations. Toulon: ICLR, 2017. 1–13.
    [35] Zhang XY, Zhou XY, Lin MX, Sun J. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In: Proc. of the 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 6848–6856. [doi: 10.1109/CVPR.2018.00716]
    [36] Yue Q, Xu XL, Wang YX, Tao YK, Luo XLY. Routing-guided learned product quantization for graph-based approximate nearest neighbor search. In: Proc. of the 40th IEEE Int’l Conf. on Data Engineering. Utrecht: IEEE, 2024. 4870–4883. [doi: 10.1109/ICDE60146.2024.00370]
    [37] Asiyabi RM, Anghel A, Focsa A, Datcu M, Martone M, Rizzoli P, Imbembo E. Adaptation of decoded Sentinel-1 SAR raw data for the assessment of novel data compression methods. In: Proc. of the 2024 IEEE Int’l Geoscience and Remote Sensing Symp. Athens: IEEE, 2024. 2541–2545. [doi: 10.1109/IGARSS53475.2024.10642269]
    [38] Han S, Mao HZ, Dally WJ. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv:1510.00149, 2015.
    [39] Lin HP, Yin JJ, Yang J, Xu F. Interpreting neural network pattern with pruning for PolSAR target recognition. IEEE Trans. on Geoscience and Remote Sensing, 2024, 62: 5227114.
    [40] Zhang WH, Deng WJ, Cui Z, Liu J, Jiao LC. Object knowledge distillation for joint detection and tracking in satellite videos. IEEE Trans. on Geoscience and Remote Sensing, 2024, 62: 4701213.
    [41] Zhou WJ, Li YZ, Huan J, Liu YY, Jiang QP. MSTNet-KD: Multilevel transfer networks using knowledge distillation for the dense prediction of remote-sensing images. IEEE Trans. on Geoscience and Remote Sensing, 2024, 62: 4504612.
    [42] Krebs GD. Haisi 1. 2025. https://space.skyrocket.de/doc_sdat/haisi-1.htm
    [43] Krebs GD. SATech 01 (Kongjian Xinjishu Shiyan 01). 2025. https://space.skyrocket.de/doc_sdat/satech-01.htm
    [44] Zhao ZR, Barijough KM, Gerstlauer A. DeepThings: Distributed adaptive deep learning inference on resource-constrained IoT edge clusters. IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems, 2018, 37(11): 2348–2359.
    [45] Kang YP, Hauswald J, Gao C, Rovinski A, Mudge T, Mars J, Tang LJ. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. ACM Sigarch Computer Architecture News, 2017, 45(1): 615–629.
    [46] Laskaridis S, Venieris S I, Almeida M, Leontiadis I, Lane ND. SPINN: Synergistic progressive inference of neural networks e Mars 2020 rover mission. arXiv:2011.08733, 2020.
    t’l Conf. on Mobile Computing and Networking. London: ACM, 2020. 37. [doi: 10.1145/3372224.3419194]
    [47] Li E, Zeng LK, Zhou Z, Chen X. Edge AI: On-demand accelerating deep neural network inference via edge computing. IEEE Trans. on Wireless Communications, 2020, 19(1): 447–457.
    [48] Zhang S, Zhang S, Qian ZZ, Wu J, Jin YB, Lu SL. DeepSlicing: Collaborative and adaptive CNN inference with low latency. IEEE Trans. on Parallel and Distributed Systems, 2021, 32(9): 2175–2187.
    [49] Denby B, Lucia B. Orbital edge computing: Nanosatellite constellations as a new class of computer system. In: Proc. of the 25th Int’l Conf. on Architectural Support for Programming Languages and Operating Systems. Lausanne: ACM, 2020. 939–954. [doi: 10.1145/3373376.3378473]
    [50] Denby B, Chintalapudi K, Chandra R, Lucia B, Noghabi S. Kodan: Addressing the computational bottleneck in space. In: Proc. of the 28th ACM Int’l Conf. on Architectural Support for Programming Languages and Operating Systems, Volume 3. Vancouver: ACM, 2023. 392–403. [doi: 10.1145/3582016.3582043]
    [51] Tao B, Chabra O, Janveja I, Gupta I, Vasisht D. Known knowns and unknowns: Near-realtime earth observation via query bifurcation in serval. In: Proc. of the 21st USENIX Symp. on Networked Systems Design and Implementation. Santa: USENIX, 2024. 809–824.
    [52] Wang SG, Zhang QY, Xing RL, Qi F, Xu MW. The first verification test of space-ground collaborative intelligence via cloud-native satellites. China Communications, 2024, 21(4): 208–217.
    [53] Ji JH, Zhong BJ, Wu QH, Ma KK. A channel-wise multi-scale network for single image super-resolution. IEEE Signal Processing Letters, 2024, 31: 805–809.
    [54] Wang XD, Li SF, Kallidromitis K, Kato Y, Kozuka K, Darrell T. Hierarchical open-vocabulary universal image segmentation. In: Proc. of the 37th Int’l Conf. on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2023. 936. [doi: 10.5555/3666122.3667058]
    [55] Zhang QY, Yuan X, Xing RL, Zhang YR, Zheng ZM, Ma X, Xu MW, Dustdar S, Wang SG. Resource-efficient in-orbit detection of earth objects. In: Proc. of the 2024 IEEE Conf. on Computer Communications. Vancouver: IEEE, 2024. 551–560. [doi: 10.1109/INFOCOM52122.2024]
    [56] So J, Hsieh K, Arzani B, Noghabi S, Avestimehr S, Chandra R. FedSpace: An efficient federated learning framework at satellites and ground stations. arXiv:2202.01267, 2022.
    [57] Nguyen J, Malik K, Zhan HY, Yousefpour A, Rabbat M, Malek M, Huba D. Federated learning with buffered asynchronous aggregation. In: Proc. of the 25th Int’l Conf. on Artificial Intelligence and Statistics. Valencia: PMLR, 2022. 3581–3607.
    [58] Yang C, Yuan JL, Wu YZ, Sun QB, Zhou A, Wang SG, Xu MW. Communication-efficient satellite-ground federated learning through progressive weight quantization. IEEE Trans. on Mobile Computing, 2024, 23(9): 8999–9011.
    [59] Razmi N, Matthiesen B, Dekorsy A, Popovski P. Ground-assisted federated learning in LEO satellite constellations. IEEE Wireless Communications Letters, 2022, 11(4): 717–721.
    [60] Tang FX, Wen C, Chen XH, Kato N. Federated learning for intelligent transmission with space-air-ground integrated network toward 6G. IEEE Network, 2023, 37(2): 198–204.
    [61] Zhang HY, Zhao HB, Liu RK, Gao XQ, Xu SZ. Leader federated learning optimization using deep reinforcement learning for distributed satellite edge intelligence. IEEE Trans. on Services Computing, 2024, 17(5): 2544–2557.
    [62] 向尚, 陈盈果, 李国梁, 邢立宁. 卫星自主与协同任务调度规划综述. 自动化学报, 2019, 45(2): 252–264.
    Xiang S, Chen YG, Li GL, Xing LN. Review on satellite autonomous and collaborative task scheduling planning. Acta Automatica Sinica, 2019, 45(2): 252–264 (in Chinese with English abstract).
    [63] 赵萍, 陈志明. 应用于卫星自主任务调度的改进遗传算法. 中国空间科学技术, 2016, 36(6): 47–54.
    Zhao P, Chen ZM. An adapted genetic algorithm applied to satellite autonomous task scheduling. Chinese Space Science and Technology, 2016, 36(6): 47–54 (in Chinese with English abstract).
    [64] Damiani S, Verfaillie G, Charmeau MC. An earth watching satellite constellation: How to manage a team of watching agents with limited communications. In: Proc. of the 4th Int’l Joint Conf. on Autonomous Agents and Multiagent Systems. New York: ACM, 2005. 455–462. [doi: 10.1145/1082473.1082543]
    [65] Cao XL, Yang B, Shen YL, Yuen C, Zhang Y, Han Z, Poor HV, Hanzo L. Edge-assisted multi-layer offloading optimization of LEO satellite-terrestrial integrated networks. IEEE Journal on Selected Areas in Communications, 2023, 41(2): 381–398.
    [66] Zhu XM, Jiang CX. Delay optimization for cooperative multi-tier computing in integrated satellite-terrestrial networks. IEEE Journal on Selected Areas in Communications, 2023, 41(2): 366–380.
    [67] 庞中华. 高低轨对地观测卫星协同任务规划方法研究 [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2013.
    Pang ZH. Research on collaborative mission planning method for high and low earth observation satellites [MS. Thesis]. Harbin: Harbin Institute of Technology, 2013 (in Chinese).
    [68] Li JT, Zhang S, Liu XL, He RJ. Multi–objective evolutionary optimization for geostationary orbit satellite mission planning. Journal of Systems Engineering and Electronics, 2017, 28(5): 934–945.
    [69] Zhang XY, Liu J, Zhang R, Huang YD, Tong JC, Xin N, Liu L, Xiong ZH. Energy-efficient computation peer offloading in satellite edge computing networks. IEEE Trans. on Mobile Computing, 2024, 23(4): 3077–3091.
    [70] Chen Q, Meng WX, Quek TQS, Chen SY. Multi-tier hybrid offloading for computation-aware IoT applications in civil aircraft-augmented SAGIN. IEEE Journal on Selected Areas in Communications, 2023, 41(2): 399–417.
    [71] Bensana E, Verfaillie G, Agnese J C, Bataille N. Exact and inexact methods for daily management of earth observation satellite. In: Proc. of the 1996 Conf. on Space Mission Operations and Ground Data Systems. 1996. 394–507.
    [72] Sarkheyli A, Bagheri A, Ghorbani-Vaghei B, Askari-Moghadam R. Using an effective tabu search in interactive resources scheduling problem for LEO satellites missions. Aerospace Science and Technology, 2013, 29(1): 287–295.
    [73] Cheng XW, Lyu F, Quan W, Zhou CH, He HL, Shi WS, Shen XM. Space/aerial-assisted computing offloading for IoT applications: A learning-based approach. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117–1129.
    [74] Qin ZY, Yao HP, Mai TL, Wu D, Zhang N, Guo S. Multi-agent reinforcement learning aided computation offloading in aerial computing for the Internet-of-Things. IEEE Trans. on Services Computing, 2023, 16(3): 1976–1986.
    [75] Kim H, Chang YK. Mission scheduling optimization of SAR satellite constellation for minimizing system response time. Aerospace Science and Technology, 2015, 40: 17–32.
    [76] Cui JT, Zhang X. Application of a multi-satellite dynamic mission scheduling model based on mission priority in emergency response. Sensors, 2019, 19(6): 1430.
    [77] Cesta A, Ocon J, Rasconi R, Sanchez Montero AM. Simulating on-board autonomy in a multi-agent system with planning and scheduling. 2010. https://www.researchgate.net/profile/Jorge-Ocon/publication/266222948_Simulating_On-Board_Autonomy_in_a_Multi-Agent_System_with_Planning_and_Scheduling/links/55487a080cf26a7bf4dac59b/Simulating-On-Board-Autonomy-in-a-Multi-Agent-System-with-Planning-and-Scheduling.pdf
    [78] Grey S. Distributed agents for autonomous spacecraft [MS. Thesis]. Glasgow: University of Glasgow, 2013.
    [79] 王海蛟. 基于强化学习的卫星规模化在线调度方法研究 [博士学位论文]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2018.
    Wang HJ. Massive scheduling method under online situation for satellites based on reinforcement learning [Ph.D. Thesis]. Beijing: University of Chinese Academy of Sciences (National Space Science Center, CAS), 2018 (in Chinese).
    [80] Chien S, Mclaren D, Rabideau G, Silverman D, Mandl D, Hengemihle J, Microtel L. Onboard processing for low-latency science for the HyspIRI mission. 2010. https://www.researchgate.net/publication/229022061_Onboard_Processing_for_Low-latency_Science_for_the_HyspIRI_Mission
    [81] Agrawal J, Yelamanchili A, Chien S. Using explainable scheduling for th
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张其阳,邢若粼,李元哲,周傲,徐梦炜,王尚广.卫星边缘计算智能化技术研究进展.软件学报,,():1-18

复制
相关视频

分享
文章指标
  • 点击次数:144
  • 下载次数: 119
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-07-28
  • 最后修改日期:2024-12-05
  • 在线发布日期: 2025-06-04
文章二维码
您是第20227039位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号