摘要:知识图谱补全模型需要具备归纳能力, 才能够随着知识图谱的扩充泛化到新实体上. 然而, 现有的方法都只能通过聚合知识图谱中的邻居信息, 从一个局部的视角来理解实体的语义, 从而导致无法从不同的视角捕捉到实体之间的多种有价值的关联. 在局部视角以外, 通过非显式连接实体之间和远距离连接实体之间的交互, 从而以全局视角和序列视角来进一步理解实体是至关重要的. 更重要的是, 强调通过多个不同视角聚合到的信息应当是互补的, 而不是冗余的. 因此, 提出一个带有差异化机制的多视角知识图谱补全框架, 用于归纳式知识图谱补全任务. 它能够从多个不同视角学习到互补的、互不重叠的实体表示. 具体来说, 除了通过关系图卷积网络聚合邻居信息得到实体的局部表示外, 设计一种基于注意力的差异化机制, 用于从语义相关的实体和实体相关路径中聚合得到实体的全局和序列表示. 最终, 融合这些表示, 并基于它们给三元组打分. 实验结果证明, 所提方法在归纳式的设定下超越了当前最先进的方法. 此外, 所提方法在直推式的知识图谱补全任务中也保持着有竞争力的表现.