面向深度学习的后门攻击及防御研究综述
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP306

基金项目:

国家自然科学基金(62202238); 江苏省重点研发项目(BE2022065-5)


Survey on Backdoor Attacks and Defenses for Deep Learning Research
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度学习模型是人工智能系统的重要组成部分, 被广泛应用于现实多种关键场景. 现有研究表明, 深度学习的低透明度与弱可解释性使得深度学习模型对扰动敏感. 人工智能系统面临多种安全威胁, 其中针对深度学习的后门攻击是人工智能系统面临的重要威胁. 为了提高深度学习模型的安全性, 全面地介绍计算机视觉、自然语言处理等主流深度学习系统的后门攻击与防御研究进展. 首先根据现实中攻击者能力将后门攻击分为全过程可控后门、模型修改后门和仅数据投毒后门. 然后根据后门构建方式进行子类划分. 接着根据防御策略对象将现有后门防御方法分为基于输入的后门防御与基于模型的后门防御. 最后汇总后门攻击常用数据集与评价指标, 并总结后门攻击与防御领域存在的问题, 在后门攻击的安全应用场景与后门防御的有效性等方面提出建议与展望.

    Abstract:

    Deep learning models are integral components of artificial intelligence systems, widely deployed in various critical real-world scenarios. Research has shown that the low transparency and weak interpretability of deep learning models render them highly sensitive to perturbations. Consequently, artificial intelligence systems are exposed to multiple security threats, with backdoor attacks on deep learning models representing a significant concern. This study provides a comprehensive overview of the research progress on backdoor attacks and defenses in mainstream deep learning systems, including computer vision and natural language processing. Backdoor attacks are categorized based on the attacker’s capabilities into full-process controllable backdoors, model modification backdoors, and data poisoning backdoors, which are further classified according to the backdoor construction methods. Defense strategies are divided into input-based defenses and model-based defenses, depending on the target of the defensive measures. This study also summarizes commonly used datasets and evaluation metrics in this domain. Lastly, existing challenges in backdoor attack and defense research are discussed, alongside recommendations and future directions focusing on security application scenarios of backdoor attacks and the efficacy of defense mechanisms.

    参考文献
    相似文献
    引证文献
引用本文

高梦楠,陈伟,吴礼发,张伯雷.面向深度学习的后门攻击及防御研究综述.软件学报,,():1-35

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-27
  • 最后修改日期:2024-07-15
  • 录用日期:
  • 在线发布日期: 2025-04-25
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号