基于SML4ADS2.0的自动驾驶场景建模与边缘关键场景生成方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

杜德慧,E-mail:dhdu@sei.ecnu.edu.cn

中图分类号:

TP311

基金项目:

国家自然科学基金面上项目(62272165)


Approach for Scenario Modeling with SML4ADS2.0 and Edge-Critical Scenario Generation for Autonomous Driving System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    自动驾驶中极端的场景、无法预测的人类行为等长尾问题逐渐成为制约自动驾驶系统(Autonomous Driving System,ADS)发展的关键要素,因此有效地生成安全关键场景对于提高自动驾驶系统的安全性至关重要.现有的自动驾驶场景生成主要依赖于大量的路采数据,采用数据驱动式场景生成方法,并结合场景泛化技术生成相应的驾驶场景.该方法耗时耗力,成本高,而且难以有效生成边缘场景.而模型驱动式场景建模方法通过构建逻辑场景模型,能够建模复杂的场景特征并有效生成安全关键场景.其面临的挑战性问题是如何设计一种基于领域知识的可视化场景建模语言,支持抽象建模复杂驾驶场景,并进一步有效地挖掘安全攸关的边缘关键场景.针对以上问题,本文提出一种基于SML4ADS2.0的自动驾驶场景建模及边缘关键场景生成方法.该方法基于ADS领域本体建模场景,并结合形式化量化评估与重要性采样实现边缘关键场景生成.首先,本文提出基于SML4ADS2.0模型驱动式场景建模方法,设计了一种基于ADS领域本体的自动驾驶场景建模语言(Scenario Modeling Language for Autonomous Driving System,SML4ADS2.0),以构建自动驾驶场景模型;其次,通过模型转换规则实现场景模型到随机混成自动机(Stochastic Hybrid Automata,SHA)的模型转换,并使用模型检测工具UPPAAL-SMC对场景模型进行量化评估分析;然后,通过重要性采样技术在场景空间中快速检测到边缘场景,实现逻辑场景到边缘关键具体场景的有效生成;最后,结合变道超车等典型场景,进行案例展示.实验结果表明该方法能够有效建模场景,并解决ADS安全关键场景生成问题.

    Abstract:

    Extreme scenarios in autonomous driving, as well as unpredictable human behaviors, have become key factors restricting the development of Autonomous Driving Systems (ADS). Therefore, effectively generating safety-critical scenarios is crucial for enhancing the safety of ADS. Existing methods for generating autonomous driving scenarios mainly rely on substantial road-collecting and employ data-driven approaches combined with scenario generalization techniques, These methods are time-consuming, labor-intensive, and costly, making it difficult to effectively generate edge cases. In contrast, model-driven scenario modeling methods can construct logical scenario models to encapsulate complex scene features and effectively generate safety-critical scenarios. However, The challenging issue it faces is how to design a domain-knowledge-based visual scenario modeling language that supports the abstract modeling of complex driving scenarios and further effectively explores edge-critical scenarios To address these issues, this paper proposes an approach for scenario modeling with SML4ADS2.0 and edge-critical scenario generation for autonomous driving system. This method utilizes ontology modeling of scenarios within the ADS domain, combining formal quantitative evaluation with importance sampling to generate edge-critical scenarios. First, we propose a model-driven scenario modeling method based on SML4ADS2.0, designing a Scenario Modeling Language for Autonomous Driving System (SML4ADS2.0) to construct models of autonomous driving scenarios. Secondly, we implement the conversion of scenario models to Stochastic Hybrid Automata (SHA) through model transformation rules and use the model checking tool UPPAAL-SMC for quantitative evaluation and analysis of the scenario models. Subsequently, we employ importance sampling techniques to rapidly detect edge scenarios within the scenario space, effectively generating specific edge-critical scenarios from logical scenes. Finally, we demonstrate the method with case studies involving typical scenarios such as lane changes and overtaking. Experimental results indicate that this approach can effectively model scenarios and address the generation of safety-critical scenarios for ADS.

    参考文献
    相似文献
    引证文献
引用本文

杜德慧,叶振,郑成行,朱珍珍,李家蕴.基于SML4ADS2.0的自动驾驶场景建模与边缘关键场景生成方法.软件学报,2025,36(8):0

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-26
  • 最后修改日期:2024-10-14
  • 录用日期:
  • 在线发布日期: 2024-12-10
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号