基于群体情绪稳态化的社交网络谣言检测方法
作者:
中图分类号:

TP18

基金项目:

陕西省自然科学基础研究计划(2023-JC-YB-615); 教育部人文社会科学基金(24YJAZH202); 陕西省社会科学基金(2023R102)


Collective Emotional Stabilization Method for Social Network Rumor Detection
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    网络信息来源众多、鱼龙混杂, 及时、准确地判断其是否为谣言是社交媒体认知域研究的关键问题. 先前的研究大多侧重于谣言的文本内容、用户特征或局限于传播模式中的固有特征, 忽略了用户参与事件讨论而产生的群体情绪及其产生且隐藏于谣言传播的情绪稳态特征的关键线索. 提出一种以群体情绪稳态为导向, 融合时序和空间稳态特征的社交网络谣言检测方法, 该方法基于谣言传播中的文本特征和用户行为, 将群体情绪的时序与空间关系稳态化特征相结合, 能够实现较强的表达能力和检测精度. 具体地, 该方法以用户对某事件或话题态度的情绪关键词作为基础, 利用递归神经网络构建时序关系的情绪稳态特征, 使群体情绪具有表达能力较强的时间一致性特征, 可以反映群体情绪随时间的趋同效应; 利用异构图神经网络建立用户与关键词、文本与关键词之间联系, 使群体情绪具有空间关系的细粒度群体情绪稳态特征; 最后, 将两类局部稳态特征进行融合, 具备全局性且提高了特征表达, 进一步分类可获得谣言检测结果. 所提方法运行于两个国际公开且被广泛使用的推特数据集上, 其准确率较基线中性能最好方法分别提高了3.4%和3.2%, T-F1值较基线中性能最好方法分别提高了3.0%和1.8%, N-F1值较基线中性能最好方法分别提高了2.7%和2.3%, U-F1值较基线中性能最好方法分别提高了2.3%和1.0%.

    Abstract:

    There are numerous and miscellaneous sources of online information. Judging whether it is a rumor in a timely and accurate manner is a crucial issue in the research of the cognitive domain of social media. Most of the previous studies have mainly concentrated on the text content of rumors, user characteristics, or the inherent features confined to the propagation mode, ignoring the key clues of the collective emotions generated by users’ participation in event discussions and the emotional steady-state characteristics hidden in the spread of rumors. In this study, a social network rumor detection method that is oriented by collective emotional stabilization and integrates temporal and spatial steady-state features is proposed. Based on the text features and user behaviors in rumor propagation, the temporal and spatial relationship steady-state features of collective emotions are combined for the first time, which can achieve strong expressiveness and detection accuracy. Specifically, this method takes the emotional keywords of users’ attitude towards a certain event or topic as the basis and uses recurrent neural networks to construct emotional steady-state features of the temporal relationship, enabling the collective emotions to have temporally consistent features with strong expressiveness, which can reflect the convergence effect of the collective emotions over time. The heterogeneous graph neural network is utilized to establish the connections between users and keywords, as well as between texts and keywords so that the collective emotions possess the fine-grained collective emotional steady-state features of the spatial relationship. Finally, the two types of local steady-state features are fused, possessing globality and improving the feature expression. Further classification can obtain the rumor detection results. The proposed method is run on two internationally publicly available and widely used Twitter datasets. Compared with the best-performing method in the baselines, the accuracy is improved by 3.4% and 3.2% respectively; the T-F1 value is improved by 3.0% and 1.8% respectively; the N-F1 value is improved by 2.7% and 2.3% respectively; the U-F1 value is improved by 2.3% and 1.0% respectively.

    参考文献
    相似文献
    引证文献
引用本文

殷茗,乔胜,陈威,姜继娇.基于群体情绪稳态化的社交网络谣言检测方法.软件学报,,():1-24

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-21
  • 最后修改日期:2024-08-13
  • 在线发布日期: 2025-02-26
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号