安卓恶意软件对抗样本攻击技术综述
作者:
中图分类号:

TP311

基金项目:

中国博士后科学基金(2024M751010); 国家资助博士后研究人员计划(GZB20240248); 网络空间安全教育部重点实验室及河南省网络密码技术重点实验室开放基金课题(KLCS20240305); CCF-绿盟科技“鲲鹏”科研基金(CCF-NSFOCUS 2023011)


Survey on Android Malware Adversarial Example Attack Techniques
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [87]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    面对Android恶意软件带来的严重的安全风险, 如何有效检测Android恶意软件已成为工业界与学术界共同关注的焦点. 然而随着Android对抗样本技术的出现, 现有的恶意软件检测系统面临着前所未有的挑战. Android恶意软件对抗样本攻击通过对恶意软件的源码或特征进行扰动, 使其在保持原始功能不受影响的条件下绕过恶意软件检测模型. 尽管目前已有大量针对恶意软件的对抗样本攻击研究, 但是现阶段仍缺乏针对Android系统对抗样本攻击的完备性综述, 且并未研究Android系统中对抗样本设计的独特要求, 因此首先介绍Android恶意软件检测的基本概念; 然后从不同角度对现有的Android对抗样本技术进行分类, 梳理Android对抗样本技术的发展脉络; 随后综述近年来的Android对抗样本技术, 介绍不同类别的代表性工作并分析其优缺点; 之后, 分类介绍常用的安卓对抗样本攻击所使用的代码扰动手段并分析其应用场景; 最后讨论Android恶意软件对抗样本技术面临的挑战, 展望该新兴领域的未来研究方向.

    Abstract:

    In the face of the severe security risks posed by Android malware, effective Android malware detection has become the focus of common concern in both the industry and academia. However, with the emergence of Android adversarial example techniques, existing malware detection systems are facing unprecedented challenges. Android malware adversarial example attacks can bypass existing malware detection models by perturbing the source code or characteristics of malware while keeping its original functionality inact. Despite substantial research on adversarial example attacks against malware, there is still a lack of a comprehensive review specifically focusing on adversarial example attacks in the Android system at present, and the unique requirements for adversarial example design within the Android system are not studied. Therefore, this study begins by introducing the fundamental concepts of Android malware detection. It then classifies existing Android adversarial example techniques from various perspectives and provides an overview of the development sequence of Android adversarial example techniques. Subsequently, it reviews Android adversarial example techniques in recent years, introduces representative work in different categories and analyzes their pros and cons. Furthermore, it categorizes and introduces common means of code perturbation in Android adversarial example attacks, and analyzes their application scenarios. Finally, it discusses the challenges faced by Android malware adversarial example techniques, and envisions future research directions in this emerging field.

    参考文献
    [1] 范铭, 刘烃, 刘均, 罗夏朴, 于乐, 管晓宏. 安卓恶意软件检测方法综述. 中国科学:信息科学, 2020, 50(8):1148-1177.
    Fan M, Liu T, Liu J, Luo XP, Yu L, Guan XH. Android malware detection:A survey. Scientia Sinica Informationis, 2020, 50(8):1148-1177 (in Chinese with English abstract).
    [2] Ye YF, Hou SF, Chen LW, Lei JW, Wan WQ, Wang JB, Xiong Q, Shao FD. AiDroid:When heterogeneous information network marries deep neural network for real-time Android malware detection. arXiv:1811.01027, 2019.
    [3] Tatyana S. The mobile malware threat landscape in 2022. 2023. https://securelist.com/mobile-threat-report-2022/108844
    [4] Zheng M, Sun MS, Lui JCS. Droid analytics:A signature based analytic system to collect, extract, analyze and associate Android malware. In:Proc. of the 12th IEEE Int'l Conf. on Trust, Security and Privacy in Computing and Communications. Melbourne:IEEE, 2013. 163-171.[doi:10.1109/TrustCom.2013.25]
    [5] Zhou YY, Wang Z, Zhou W, Jiang XX. Hey, you, get off of my market:Detecting malicious Apps in official and alternative Android markets. In:Proc. of the 2012 NDSS Symp. San Diego, 2012.
    [6] Seo SH, Gupta A, Sallam AM, Bertino E, Yim K. Detecting mobile malware threats to homeland security through static analysis. Journal of Network and Computer Applications, 2014, 38:43-53.
    [7] Feng Y, Bastani O, Martins R, Dillig I, Anand S. Automated synthesis of semantic malware signatures using maximum satisfiability. arXiv:1608.06254, 2017.
    [8] Feng Y, Anand S, Dillig I, Aiken A. Apposcopy:Semantics-based detection of Android malware through static analysis. In:Proc. of the 22nd ACM SIGSOFT Int'l Symp. on Foundations of Software Engineering. Hong Kong:ACM, 2014. 576-587.
    [9] Arp D, Spreitzenbarth M, Hübner M, Gascon H, Rieck K. DREBIN:Effective and explainable detection of Android malware in your pocket. In:Proc. of the 2014 NDSS Symp. San Diego, 2014.[doi:10.14722/ndss.2014.23247]
    [10] Octeau D, McDaniel P, Jha S, Bartel A, Bodden E, Klein J, Le Traon Y. Effective inter-component communication mapping in Android with Epicc:An essential step towards holistic security analysis. In:Proc. of the 22nd USENIX Security Symp. Washington:USENIX Association, 2013. 543-558.
    [11] Enck W, Ongtang M, McDaniel P. On lightweight mobile phone application certification. In:Proc. of the 16th ACM Conf. on Computer and Communications Security. Chicago:ACM, 2009. 235-245.[doi:10.1145/1653662.1653691]
    [12] Li J, Sun LC, Yan QB, Li ZQ, Srisa-An W, Ye H. Significant permission identification for machine-learning-based Android malware detection. IEEE Trans. on Industrial Informatics, 2018, 14(7):3216-3225.
    [13] Bai YD, Xing ZC, Li XH, Feng ZY, Ma DY. Unsuccessful story about few shot malware family classification and siamese network to the rescue. In:Proc. of the 42nd ACM/IEEE Int'l Conf. on Software Engineering. Seoul:ACM, 2020. 1560-1571.
    [14] Yuan W, Jiang Y, Li H, Cai MH. A lightweight on-device detection method for Android malware. IEEE Trans. on Systems, Man, and Cybernetics:Systems, 2021, 51(9):5600-5611.
    [15] Fereidooni H, Conti M, Yao DF, Sperduti A. ANASTASIA:Android malware detection using static analysis of applications. In:Proc. of the 8th IFIP Int'l Conf. on New Technologies, Mobility and Security (NTMS). Larnaca:IEEE, 2016. 1-5.
    [16] Xu K, Li YJ, Deng RH, Chen K. DeepRefiner:Multi-layer Android malware detection system applying deep neural networks. In:Proc. of the 2018 IEEE European Symp. on Security and Privacy (EuroS&P). London:IEEE, 2018. 473-487.
    [17] Fan M, Liu J, Luo XP, Chen K, Tian ZZ, Zheng QH, Liu T. Android malware familial classification and representative sample selection via frequent subgraph analysis. IEEE Trans. on Information Forensics and Security, 2018, 13(8):1890-1905.
    [18] Gao TC, Peng W, Sisodia D, Saha TK, Li F, Al Hasan M. Android malware detection via graphlet sampling. IEEE Trans. on Mobile Computing, 2019, 18(12):2754-2767.
    [19] Zhang M, Duan Y, Yin H, Zhao ZR. Semantics-aware Android malware classification using weighted contextual API dependency graphs. In:Proc. of the 2014 ACM SIGSAC Conf. on Computer and Communications Security. Scottsdale:ACM, 2014. 1105-1116.[doi:10.1145/2660267.2660359]
    [20] Onwuzurike L, Mariconti E, Andriotis P, De Cristofaro E, Ross G, Stringhini G. Mamadroid:Detecting Android malware by building Markov chains of behavioral models (extended version). ACM Trans. on Privacy and Security (TOPS), 2019, 22(2):14.
    [21] Wüchner T, Cisłak A, Ochoa M, Pretschner A. Leveraging compression-based graph mining for behavior-based malware detection. IEEE Trans. on Dependable and Secure Computing, 2019, 16(1):99-112.
    [22] Hou SF, Ye YF, Song YQ, Abdulhayoglu M. HinDroid:An intelligent Android malware detection system based on structured heterogeneous information network. In:Proc. of the 23rd ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. Halifax:ACM, 2017. 1507-1515.[doi:10.1145/3097983.3098026]
    [23] Gong JC, Niu WN, Li S, Zhang MX, Zhang XS. Sensitive behavioral chain-focused Android malware detection fused with AST semantics. IEEE Trans. on Information Forensics and Security, 2024, 19:9216-9229.
    [24] Zhang XH, Zhang Y, Zhong M, Ding DZ, Cao YZ, Zhang YK, Zhang M, Yang M. Enhancing state-of-the-art classifiers with API semantics to detect evolved Android malware. In:Proc. of the 2020 ACM SIGSAC Conf. on Computer and Communications Security. Virtual Event:ACM, 2020. 757-770.[doi:10.1145/3372297.3417291]
    [25] Fan M, Liu J, Wang W, Li HF, Tian ZZ, Liu T. DAPASA:Detecting Android piggybacked apps through sensitive subgraph analysis. IEEE Trans. on Information Forensics and Security, 2017, 12(8):1772-1785.
    [26] 吴月明, 齐蒙, 邹德清, 金海. 图卷积网络的抗混淆安卓恶意软件检测. 软件学报, 2023, 34(6):2526-2542. http://www.jos.org.cn/1000-9825/6848.htm
    Wu YM, Qi M, Zou DQ, Jin H. Obfuscation-resilient Android malware detection based on graph convolutional networks. Ruan Jian Xue Bao/Journal of Software, 2023, 34(6):2526-2542 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6848.htm
    [27] 张雪涛, 王金双, 孙蒙. 基于GCN的安卓恶意软件检测模型. 软件导刊, 2020, 19(7):187-193.
    Zhang XT, Wang JS, Sun M. GCN-based Android malware detection model. Software Guide, 2020, 19(7):187-193 (in Chinese with English abstract).
    [28] 岳子巍, 方勇, 张磊. 基于图注意力网络的安卓恶意软件检测. 四川大学学报(自然科学版), 2022, 59(5):053002.
    Yue ZW, Fang Y, Zhang L. Android malware detection based on graph attention networks. Journal of Sichuan University (Natural Science Edition), 2022, 59(5):053002 (in Chinese with English abstract).
    [29] Cortes C, Vapnik V. Support-vector networks. Machine Learning, 1995, 20(3):273-297.
    [30] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc. of the IEEE, 1998, 86(11):2278-2324.
    [31] Goodfellow IJ, Shlens J, Szegedy C. Explaining and harnessing adversarial examples. arXiv:1412.6572, 2015.
    [32] Moosavi-Dezfooli SM, Fawzi A, Frossard P. DeepFool:A simple and accurate method to fool deep neural networks. In:Proc. of the 2016 IEEE Conf. on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016. 2574-2582.[doi:10.1109/CVPR.2016.282]
    [33] Wang JK. Adversarial examples in physical world. In:Proc. of the 30th Int'l Joint Conf. on Artificial Intelligence. Montreal, 2021. 4925-4926.[doi:10.24963/ijcai.2021/694]
    [34] Zhang CN, Benz P, Lin CG, Karjauv A, Wu J, Kweon IS. A survey on universal adversarial attack. In:Proc. of the 30th Int'l Joint Conf. on Artificial Intelligence. Montreal, 2021. 4687-4694.[doi:10.24963/ijcai.2021/635]
    [35] Chen PY, Zhang H, Sharma Y, Yi JF, Hsieh CJ. ZOO:Zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In:Proc. of the 10th ACM Workshop on Artificial Intelligence and Security. Dallas:ACM, 2017. 15-26.[doi:10.1145/3128572.3140448]
    [36] Moosavi-Dezfooli SM, Fawzi A, Fawzi O, Frossard P. Universal adversarial perturbations. In:Proc. of the 2017 IEEE Conf. on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017. 86-94.[doi:10.1109/CVPR.2017.17]
    [37] Carlini N, Wagner D. Towards evaluating the robustness of neural networks. In:Proc. of the 2017 IEEE Symp. on Security and Privacy (SP). San Jose:IEEE, 2017. 39-57.[doi:10.1109/SP.2017.49]
    [38] Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A. Towards deep learning models resistant to adversarial attacks. arXiv:1706.06083, 2019.
    [39] Su JW, Vargas DV, Sakurai K. One pixel attack for fooling deep neural networks. IEEE Trans. on Evolutionary Computation, 2019, 23(5):828-841.
    [40] Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R. Intriguing properties of neural networks. arXiv:1312.6199, 2014.
    [41] Chow KH, Liu L, Loper M, Bae J, Gursoy ME, Truex S, Wei WQ, Wu YZ. Adversarial objectness gradient attacks in real-time object detection systems. In:Proc. of the 2nd IEEE Int'l Conf. on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). Atlanta:IEEE, 2020. 263-272.[doi:10.1109/TPS-ISA50397.2020.00042]
    [42] Zhang HT, Zhou WG, Li HQ. Contextual adversarial attacks for object detection. In:Proc. of the 2020 IEEE Int'l Conf. on Multimedia and Expo (ICME). London:IEEE, 2020. 1-6.[doi:10.1109/ICME46284.2020.9102805]
    [43] Wang DR, Li CR, Wen S, Han QL, Nepal S, Zhang XY, Xiang Y. Daedalus:Breaking nonmaximum suppression in object detection via adversarial examples. IEEE Trans. on Cybernetics, 2022, 52(8):7427-7440.
    [44] Liu X, Yang HR, Liu ZW, Song LH, Li H, Chen YR. DPatch:An adversarial patch attack on object detectors. arXiv:180602299, 2019.
    [45] Hu YCT, Chen JC, Kung BH, Hua KL, Tan DS. Naturalistic physical adversarial patch for object detectors. In:Proc. of the 2021 IEEE/CVF Int'l Conf. on Computer Vision. Montreal:IEEE, 2021. 7828-7837.[doi:10.1109/ICCV48922.2021.00775]
    [46] Lee M, Kolter Z. On physical adversarial patches for object detection. arXiv:1906.11897, 2019.
    [47] Li YZ, Tian D, Chang MC, Bian X, Lyu SW. Robust adversarial perturbation on deep proposal-based models. arXiv:1809.05962, 2019.
    [48] Xie CH, Wang JY, Zhang ZS, Zhou YY, Xie LX, Yuille A. Adversarial examples for semantic segmentation and object detection. In:Proc. of the 2017 IEEE Int'l Conf. on Computer Vision. Venice:IEEE, 2017. 1378-1387.[doi:10.1109/ICCV.2017.153]
    [49] Duan RJ, Mao XF, Qin AK, Chen YF, Ye SK, He Y, Yang Y. Adversarial laser beam:Effective physical-world attack to DNNs in a blink. In:Proc. of the 2021 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Nashville:IEEE, 2021. 16057-16066.[doi:10.1109/CVPR46437.2021.01580]
    [50] Li DQ, Li QM. Adversarial deep ensemble:Evasion attacks and defenses for malware detection. IEEE Trans. on Information Forensics and Security, 2020, 15:3886-3900.
    [51] Shahpasand M, Hamey L, Vatsalan D, Xue MH. Adversarial attacks on mobile malware detection. In:Proc. of the 1st IEEE Int'l Workshop on Artificial Intelligence for Mobile (AI4Mobile). Hangzhou:IEEE, 2019. 17-20.[doi:10.1109/AI4Mobile.2019.8672711]
    [52] Demontis A, Melis M, Biggio B, Maiorca D, Arp D, Rieck K, Corona I, Giacinto G, Roli F. Yes, machine learning can be more secure! A case study on Android malware detection. IEEE Trans. on Dependable and Secure Computing, 2019, 16(4):711-724.
    [53] Hou RT, Xiang XY, Zhang QX, Liu JB, Huang T. Universal adversarial perturbations of malware. In:Proc. of the 12th Int'l Symp. on Cyberspace Safety and Security. Haikou:Springer, 2020. 9-19.[doi:10.1007/978-3-030-73671-2_2]
    [54] Zhao KF, Zhou H, Zhu YL, Zhan X, Zhou K, Li JF, Yu L, Yuan W, Luo XP. Structural attack against graph based Android malware detection. In:Proc. of the 2021 ACM SIGSAC Conf. on Computer and Communications Security. Virtual Event:ACM, 2021. 3218-3235.[doi:10.1145/3460120.3485387]
    [55] Darwaish A, Naït-Abdesselam F, Titouna C, Sattar S. Robustness of image-based Android malware detection under adversarial attacks. In:Proc. of the 2021 IEEE Int'l Conf. on Communications. Montreal:IEEE, 2021. 1-6.[doi:10.1109/ICC42927.2021.9500425]
    [56] Rathore H, Sahay SK, Nikam P, Sewak M. Robust Android malware detection system against adversarial attacks using Q-learning. Information Systems Frontiers, 2021, 23(4):867-882.
    [57] Yang W, Kong DG, Xie T, Gunter CA. Malware detection in adversarial settings:Exploiting feature evolutions and confusions in Android apps. In:Proc. of the 33rd Annual Computer Security Applications Conf. Orlando:ACM, 2017. 288-302.
    [58] Pierazzi F, Pendlebury F, Cortellazzi J, Cavallaro L. Intriguing properties of adversarial ML attacks in the problem space. In:Proc. of the 2020 IEEE Symp. on Security and Privacy (SP). San Francisco:IEEE, 2020. 1332-1349.[doi:10.1109/SP40000.2020.00073]
    [59] Hu WW, Tan Y. Generating adversarial malware examples for black-box attacks based on GAN. In:Proc. of the 7th Int'l Conf. on Data Mining and Big Data. Beijing:Springer, 2022. 409-423.[doi:10.1007/978-981-19-8991-9_29]
    [60] Gu SY, Cheng SY, Zhang WM. From image to code:Executable adversarial examples of Android applications.?慉湮携?偲牯楣瘮愠捯祦???略爠漶却?倠???匧慬愠牃扯牮畦攮挠歯敮渠????????でㄠ????????????扡牬?孉??づ嵬??汧来桮慣浥搮椠?剩???汩普愺汁煃楍???‰圲愰焮搠愲渶?????渮摛牤潯楩携?灰汤慯瑩显漱爰洮?洱愴氵眯愳爴攰?愵渵愵氮礳猴椰猴???渼琯?汤??漾畝爼湢慲氾?漶昱??摌癩愠湈挬攠摃??潮浧瀠畚琬攠牗?匠捂椬攠湙捵敡?愠湌摈??灇灡汯椠捃慙琬椠潙湵獡????ㄠ??????????ち??????戠牡?孶???嵡??慡牬爠??呡???慥爠浡慴湴?????楯慷?奲???慆牃杇椠湢敡慳湥????偤敲瑯歩敤?????畡瑲潥洠慤瑥整摥?獴潩景瑮眠慵牮敤?瑲爠慩湮獣灯汭慰湬瑥慴瑥椠潦湥???湲?倠物潮捦??潭晡?瑩桯敮?㈠ぉ????湯瑣?氠?卦礠浴灨??漳渲?卤漠晕瑓睅慎牉敘?呓敥獣瑵楲湩杴?愠湓摹??渮愠汁祮獡楨獥???慕汓瑅楎浉潘爠敁???????ど????有???金???嬸搱漭椱??瀸搮漼楢??せ??????????????㈠????????灧搠潘楓?崠?扨牵?孑??㈠嵗??潧猠瑈愬渠楇?????潩漠湍献愠流祤?噥???癲慩摡敬?牳潡業摰???瀠牯慮挠瑁楮捤慲汯?敤瘠慭獡楬潷湡?慥琠瑤慥捴步?潴湩?浮愠捳桹楳湴敥?汳攠慦牯湲椠湉杯?映潳特?扴汥慭捳欮?打潥确??湲摳爬漠椲搰?洹愬氠眱愹爨攴?携改琷攴挮琼楢潲渾??愳牝堠楇癲?????????ち????は????戠牍?孮???嵲??椠????婡档潫略?匠奍??奍畣慄湡?坩???楐??????敲畳湡杲?????摸癡敭牰獬慥牳椠慦汯?攠硭慡浬灷污敲?愠瑤瑥慴捥正獴?瑯潮眮愠牉摮??湲摯牣漮椠摯?洠慴汨睥愠爲攲?摤攠瑅敵捲瑯楰潥湡?猠祓獹瑭数洮???????卥祡獲瑣敨洠獩??潃畯牭湰慵汴??㈠こ?っ?????????????????执牥?嬬ㄠ??崱?圮愠琶欲椭渷猹????????慤祯慩渾?倰??儰?氷支愹爷游椭渳札???愭挶栶椳渹改??敟愴爼港楰湤杯? ̄????????????㈠?水??扩牡?孙???嵚??潮汧氠慘湈搬??????攮渠故瑦楦捩?慩汥杮潴爠楱瑵桥浲獹??卡捳楥敤渠瑡楴晴楡捣??浡敧牡楩据慳湴??????????????????????扡牲?嬠???嵥?塴畩??儠??塤楥湲??????楫慮潯??呥???椠畳?????楧甮?卉奮???敯湣朮??兦??婨桥攠渲朰′堳??佃??????献攠浯楮?扃汯慭捰歵?扥潲砠??湤搠牃潯業摭?慮摩癣敡牴獩慯牮楳愠汓?獣慵浲灩汴敹?愠瑃瑯慰捥歮?晡牧慥浮攺睁潃牍欬?愲朰愲椳渮猠琹‰?氱愰愴匮??????‵呝爠慎湳猳??澋滅??漠浗瀕甹琬攠犋獜???】十??????????????????拡牯?孨???崠′?攲爱琬猠椶洨愴猩????吴猳椮琼獢楲款汌楩猠????南楡浮畧氠慙瑚攬搠?慵湯渠敌慇氬椠湗条??匠瑙愮琠楁猠瑳極捲慶汥?匠捯楦攠湡捤敶??????????????に?????扮物?孵???嵦?割愠瑁桮潤牲敯????乡慬湷摡慲湥眠慤牥????卩慯桮愮礠?卯???卡敬眠慯武?????摲瘠敓牥獣慵牲楩慴汹?猠甲瀰攲爱椬漠父椨琴礩?椲游??渳搠爨潩楮搠?浨慩汮睥慳牥攠?摩整瑨攠捅瑮楧潬湩??攠獡獢潳湴獲?晣牴漩洮?牢敲椾湛昶漶牝挠敌浩敵渠瑙?氠敔慡牮湴楩湴杨?扭慴獨敡摶?敲癮愠獃椬漠湌?愠瑌琬愠捌歩獵?慙湐搮?摄敥晥数渠獬敥獡???潮牧攠湦獯楲挠?卮捤楲敯湩捤攠??湬瑷?汲??楤来楦瑥慮汳??渺癁攠獳瑹楳杴慥瑭楡潴湩???ど???????卥甠灲灥汶敩浥敷渮琠??????????扩牮?嬠???嵶?卹捳栬甠氲洰愲渲???‵?攸瘩椺渱攵″匮???戾扛收攷汝?偙???潓牍搬愠湒?????漠牗楡瑮穧?偗??呓牵畮猠瑌?爬攠杚楨潡湮?瀠潗氬椠捙祵?潑瀮琠楁洠楳穵慲瑶楥潹渠???湡?偶牥潲捳??潩晡?琠桡整???湫搠??湤琠?汥??潮湳晥??潥湴??慤捳栠楦湯敲??敡慬牷湡楲湥朠???び???????????????批牢?孲ㄠ?づ嵣?卲捩桴畹氮洠慉湅????坯潭汭獵歮楩?????桮慳爠楓睵慲汶?偹??刦愠摔晵潴牯摲?????氠椲洰漲瘳?传?‵倨爱漩砺椴洶愷氭?瀹漶氮椼换祲 ̄潛瀶琸楝洠楁穡慦瑥楲漠湙?愠汄杵漠牗楌琬栠浙獩??慈爮堠楄癲???ぁ??き???????の????扁牐?嬭???嵥??慦湥条??敲湥獳攠湦?????畢瑵楳湴????奷敡潲????坴桥散湴?瑯桮攠?杮爠敁敮摤祲?慩汤朮漠牉楮琺桐浲?晣愮椠汯獦???楥猠挹牴敨琠敉?佴瀧瑬椠浃楯穮慦琮椠潯湮???っふ????????ㄠ????????扩牮?孃???嵵??慣扡慴捩慯??慎獥瑴牷潯?剫???畓??????潓穰??潮湧穥??㈠有??氳攮稠????倰攳渮摛汤敯扩町爼祰??? ̄刱漰搮漱猰攰欷?????倳椭攳爱愹稭稰椴′????慟瘶愼氯汰慤牯潩 ̄???割放慛氶椹穝愠才污敲?畳湴楯癮敩爠獎愬氠?慯摮癴敩牮獥慬牬楡愠汁?瀠救牵瑡畲牴扡愠瑄椬漠湚獡?晥潲牯?浓愬氠睐慲牥敤??慍牄堮椠癇???ば??は???????ね????扡牬?孹ㄠ??嵯??畩潮?夠偭??奩慬湥?六???湡摲牥漠楢摹?浥慸汴睲慡牣整?慮摧瘠散牯獤慥爠楳慩汭?慬瑡瑲慩捴歩獥?戮愠獉敮携?潲湯?昮攠慯瑦甠牴敨?椠洷灴潨爠瑓慯湦捴敷?灲牥攠摓楥捣瑵楲潩湴???湐瑲?汴??潴畩牯湮愬氠?潮晤??慥捶桥楲湳敥??敮慧物湮楥湥杲?慮湧搯??祦扴敷牡湲敥琠楓捥獣???ぴ???????????っ?????????扳牨?孰?㈠?嵲?奡慮湤杯?坁??堬椠愲漰?堷匮???湛摤潯睩?????楩 ̄匱???報椴攵?吳?‵?渱挳欷?圳?‵?瀱瀳?漼港瑰敤硯瑩??椼晢晲放牛攷渰瑝椠慉瑳楯湨条?浡愠汔椬挠楔潡畫獥?慯湲摩?手攬渠楋杵湢?浴潡戠楁氮攠?慥灲灮?扬攭桢慡癳楥潤爠獢?畨獡楶湩杯?挠潡湮瑡敬硹瑳???湦?偲爠潁据??潯晩?琠桭敡???瑲桥????????????????湲瑯?氮??潦渠晴??漠渷?卨漠晉瑮睴愧牬攠??湮杦椮渠敯敮爠楃湯杭???污潴物敯湮捡敬????????で?????ち??????孵摲潩楴??瀠摓潡楮??????ぅ????匱??㈠????????瀵搮潛楤?嵩?戼牰?孯?资?崰?刱愱昰椹焯?????猰氱愱洮′串???獰獤慯捩 ̄???割愾湛搷栱慝眠慁?删???伬渠?楨浯灵愠捙瑆?漠晈?慡摮癧攠牚猬愠牌楩慥氠?攮瘠慐獓楣潯湵?愺瑁瑮慡捬歹獺?潮湧????戠慁獮敤摲??湤搠牰潥楲摭?浳慳汩睯慮爠敳?捥汣慩獦獩楣晡楴敩牯?琮爠慉楮渺敐摲?潣渮?桯祦戠牴楨摥?昲攰愱琲甠牁敃獍???湮?倮爠潯据??潯晭?瑵桴敥?ㄠ?瑮桤??湯瑭?汵??潣湡晴??潮湳?卓潥晣瑵睲慩牴敹???湡潬睥汩敧摨机敁???渠昲漰爱洲愮琠椲漱渷??愲游愮杛敤浯敩渺琼?慤湯摩 ̄?瀰瀮氱椱挴愵琯椲漳游猲??匶??????′倲格港潰浤?偩放湝格???????㈠こ????????????存摐漬椠??灡摮漠楃?????????匬??????ㄠ????は????び????っ???灢摬潥椠?嵥?扯牵?季?木?嵲??略敮爠牡慰??慯湡穣慨渠慦牯敲猠?????慴桩獮楧????乡??????洠流?卤???牤漠湡潰?牬潩楣摡?呩楯浮敳?戠慉獮攺摐?桯祣戮爠楯摦?晴敨慥琠申爰整摨?摁慮瑮慵獡敬琠?景潭牰?整晥晲攠捓瑥楣癵敲??湹搠牁潰楰摬?浣慡汴睩慯牮敳?摃敯瑮敦挮琠楎潥湷?慏湲摬?捡桮慳爺慁捃瑍攬爠椲稰愱琴椮漠渵???漵洮瀼畢瑲放牛猷″??千敨捥畮爠楋琬礠??????????の?ㄠす??????扩牥?孩???嵡??極?塡????潮湤朠????塡畢?卬??兹椠湳?偭呵???敮??????攠慩瑮甠牤敥?獥散汴敩据瑧椠潡湰?扬慩獣敡摴??湮搠牣潬楯摮?浳愠汯睮愠牁敮?慲摯癩敤爠獭慡牲楫慥汴?献愠浉灮氺敐?杯散渮攠牯慦琠楴潨湥?愳渶摴?搠敉瑮整挧瑬椠潃湯?浦攮琠桯潮搠????呷??湥映潅牮浧慩瑮楥潥湲?卮敧挮甠版楹瑤祥???ち????????????ㄠ??????戶爮?孤???崼?剤慯瑩栾漱爰攮???‵匯愲栵愶礸′匲??′?栶椸氲永漶渼????卩放睝愼止?????敝猠楚杨湡楯渠杍?愠摇癥攠牆獂愬爠楚慨污?慧琠瑔愬挠歙?慡湮搠?摊攮映敁湮捴敩?晡潬牄?牯潩扤町獁瑮??湦摦物潣楩摥?浴愠汓睖慍爭敢?摳敥瑤攠捭瑡楬潷湡?浥漠摤敥汴獥???湯?倠牦潲捡??潷景?瑫栠敦??ㄠ獁瑮??湯湩畤愮氠?????????偯??湴瑨?氠′?潤渠晉??漧湬??敯灮敦渮搠慯扮氠敉?卦祯獲瑭敡浴獩?慮渠摃?乭数瑵睴潩牮歧猠?卮畤瀠灁汰数浬敩湣瑡慴汩?噮潳氮甠浑敩???卡乮?卤???呓慰楲灩敮楧???????㈱?㈠???木???金?孤摯潩椺??灤摯潩椾??????????匸中?匭?名????特?社??た??监???灯摩漾楝?嵢?戾牛?嬵?㈠?嵡??湯楳桴?嘠???愠癍略此捥畩潲杯汳甠????卥楮汥発敥牳?????牡愠癓敩獬?????測琠潤湡漠杓汩潬當????圬椠敂牯獮瑩牦愦???‵刻楣敩摯洠楒氬氠敎牡????偭汨慡祮椠湋本?慒瑩慢牥楩?睯椠瑍栮?摅數数灬?牲敩楮湧映潴牨捥攠浵敳湥琠?汦攠慳牴湡楴湩杣??慮牤堠楤癹????????ち????びㄠ???扩牭?孲??づ崠?婨桥愠湰来?????楡畮?健???栠潴楨?夠????桮敧渠?偡??卢敯浸愠湡瑰楰捲獯?灣牨攠獦敯牲瘠楁湮杤?牯敩楤渠晭潡牬捷敡浲敥渠瑩?汥敮慴物湦楩湣条?慩瑯瑮愮挠歊?慵杲慮楡湬猠瑯?朠牓慹灳桴?湭敳甠牡慮汤?湓敯瑦睴潷牡歲獥?映漲爰′洲愬氠眱愸爳攺?搱攱琰改挲琮椼潢湲???????呵牥愠湌猬??潨湯??教灊攬渠摃慨扥汮攠?愬渠摌?卯攠捘畐爬攠??漠浇灆甮琠楍湡杬?????????つ?㈠?????ぶ???????戭物?孶???嵶?夠畭慯湢?婬????畬?奡兲??塡畮敡?她????牦潯楲搠摁敒瑔攮挠瑉潮爺??湯摣爮漠楯摦?浴慨汥眠愲父整?挠桕慓牅慎捉瑘攠牓楥穣慵瑲楩潴湹?慓湹摭?搮攠瑖敡据瑣楯潵湶?畲猺楕湓杅?摉敘敁灳?汯散慩牡湴楩湯杮??吲猰椱渷朮栠甲愸?匭挳椰收渮挼敢?愾湛搷?呝攠捈桡湳潡汮漠杈礬???ひ???????????ㄠ???????扂爮?孍???嵲?婩桤愺湁朠?奯??奬愭湤杲?奶塥??坥慶湥杮?堠?????湡潴癩敯汮??湲摡牭潥楷摯?浫愠汦睯慲爠敤?摮敡瑭敩捣琠楁潮湤?慯灩灤爠潭慡捬桷?扲慥猠敡摮?潬湹?捩潳渮瘠潉汮畦瑯楲潭湡慴汩?湮攠畡牮慤氠?湯敦瑴睷潡牲步???湣?偮牯潬捯??漬映′琰栲攱?㈠渱搳‵?渱琰?氵??漮渼晢? ̄潛渷??爠祍灡瑨潤条牶慩灦桡祲??匬攠捋畡牤楩瑲礠?慆湁搬?偆牡楴癥慭捩礠???畁楬票慡湤杩???????と????????????孹摮潡業??瀠摁潮楤??ど?ㄠ?????????????????????灳摩潦楩?嵡?扩牯?嬠???嵮??扳扥慭獩猭?????卶慩牳步敤爠?剥??吠桬敥?灲慮物敮瑧漮?摉楮昺晐敲牯散渮琠楯慦氠?敨癥漠氲田琲椰漠湉?慅汅朠潉牮楴琧桬洠???湦琮?汯??潄略牰湥慮汤?潢湬??爠瑁極晴楯据楯慭汩??湡瑮敤氠汓楥杣敵湲捥攠?呯潭潰汵獴????????ㄧ???????ㄠ??????扶牡?孩???嵉?側略瑬敬物浧慥湮??????愠牃歯潭癰?摴敩据楧猬椠潉湮?瀧牬漠捃敯獮獦攮猠???湃??慵湤搠扡潮潤欠獂?楧渠?佡灴敡爠慃瑯業潰湵獴?剮敧猬攠慉牮捴栧?愠湃摯??愮渠慯杮攠浃敹湢瑥?匠捓楣敩湥据散??噡潮汤?????乮潯牬瑯桧??潃汯汮慧湲摥??氮猠敃癡楬敧牡?卹挺楉故湅捅攬?倲田戲氰椮猠栵攱爵猭?′???つ???????????戮爱?嬰???嵁?坃愭瑐獉潃湯??剃??千桯業爭慃穹楢?乲????慥牣湨攴爹椱搴攲献′?????愰田琹栴攼?????甾瑝挼桢楲猾潛渷?????慡汬睩慤爠敓?搠效瑵敳捳瑡楩潮渠?楂渮?捅汶潡畬摵?捴潩浮灧甠瑤楹湮条?楩湣映牡慮獡瑬特畳捩瑳甠牦敥獡???????呯牲愠湁獮??潯湩??敭灡敬湷摡慲扥氠散?慴湥摧?卲敩捺畡牴敩??漮洠灉畮琺楐湲杯??㈠は???????日??ㄠ???㈧ぬ???扲牥?孥???嵃??慭瑵敮浩?卡却??坮慳映祡??????汩??栠潃畯汭祰??????愨汉睗慃牍敃?搮攠瑄敵换瑲楯潶湮?楫渺?捅汅潅甬搠′挰漲洲瀮甠琴椰渱札?‰?渮瑛?汯??漼異牤湯慩氾?漰昮??搰瘹愯湉捗敃摍??漵洱瀱申琮攲爰′匲挮椹攸渲挴攲′愵渼搯??灯灩氾楝挼慢瑲椾潛游猰???と?????????????ㄦ?社??戻爠?嬮ㄠ??嵡??畲?塓????町楁穵慴湯業????塡楬慬潹?奥???桮敥湥?????呦牥慡湴獵慲捥瑳椠潦湯獲?灭慡灬敷牡獲?愠?牥潴略瑣楴湩杯?搠牢楹瘠敭湩??汮汧椠灴瑨楥挠??畣牵癲敩??爠祬灩瑴潥杲牡慴灵桲祥?戠慉獮攺摐?歯散礮?浯慦渠慴杨敥洠攲渰琱?猠捁桃敍洠敓?晇潓牁??敃瑯敮牦漮朠敯湮攠潃畯獭?卵整湥獲漠牡?乤攠瑃睯潭牭歵獮???????味爠慓湥獣??潩湴?圮椠牖敩汥敮獮獡??潃浍洬甠渲椰挱愶琮椠漷渶猷??祝??????????ㄠ至???ㄠ?????打牯?孧ㄠ??崮??整楡?塩???略?塥????楮渠?卦???敤敲????卭潡歬潷污獲步礠?佹??偳慩瑮楧攠湰瑥?業湩晳畳獩楯潮湳?灡慮瑤琠敁牐湉?扣慡獬敬摳?愠捉据攺獐獲?捣漮渠瑯牦漠汴?獥挠栲攰洱攴猠?普潴爧?眠楃牯敮汦攮猠獯?椠湍獡畣汨楩湮?瀠界浥灡?獮祩獮瑧攠浡???????呲牮慥湴獩??漮渠?偡慮牺慨汯汵攺汉?慅湅搬??椰猱琴爮椠戸甲琭攸搷?卛祤獯瑩攺洼獰????????㈱?????????????金???戹爰?嬶???嵤?坩甾???? ̄?甸′塝???坩畲?????映晎攬挠瑚楨癵攠?摑攮映敍湡獣敨?獮捥栠敬浥敡獲?晩潮牧?灦桯楲猠桁楮湤杲?慩瑤琠慭捡歬獷?潲湥?浤潥扴楥汣整?捯潮洠灵畳瑩楮湧朠?灥汲慭瑩晳潳物浯獮???????呉爠慣湡獬??漮渠?噮攺桐楲捯畣氮愠牯?吠整捨桥渠漲氵潴杨礠???ぅㄠ????????????????????戠牷?孴??ぁ嵲??畦?塣???堠楉慮潴?奬???略楮穣慥渮椠?????桯敮渺??????渲‰攱昳昮攠挳琰椰瘭攳‰欵攮祛?浯慩渺愼杰敤浯敩渾琱‰献挱栱攰洹支?晃潔牁?栮攲琰攱爳漮朵攳渼支潰畤獯?猾敝渼獢潲爾?游攳瑝眠潇牡歳獣???摈??潙捡?乡敧瑵督潨物欠獆??休ひば???????????????扲牵?孴???嵬??桥整湥杣?奩塯???畦?塁???畯?塤????畷潡?????畩楮穧愠湥業??????氠楣条桬瑬眠敧楲条桰瑨?氮椠癉敮?浐敲浯潣爮礠?晦漠牴敨湥猠椲挰?愳瀠灁牃潍愠捗桯?扫慳獨敯摰?潯湮?桁慲牴摩睦慩牣敩?癬椠牉瑮畴慥汬楬穩慧瑥楮潣湥???湤映潓牥浣慵瑲楩潴湹?匠捂楥敲湬捩敮猺????ㄠ???????特??????扯物?嬼???嵩 ̄?漰????匵栯椲洵?????椮洲‵??″?攵漼港杰?奯卩???桢潲 ̄卛???倠慈牵欠?????慡湯?半???楡洠?卂????敯慵猠畗牙椬渠杚?獡楯洠楓氬愠版楡瑮礠?漮映??湇摄牲潯楩摤?慄灥灴汥楣捴慩瑮楧漠湁獐?瘭楲慥?牡散癫敡牧獩楮湧朠?慮湤摲???朠牭慡浬?扡楲牥琠桶浩慡爠歭楥湴杨???湩?偶牯潣捡??潯普?瑧桲敡???ㄠ??刺敐獲敯慣爮挠桯?椠湴??搠愲瀳瑲楤瘠敉?慴渧摬??潯湮癦攮爠杯敮渠瑃?卭祰獵瑴敥浲猠???潭湵瑮物散慡汴?????????づ??????????孃摃潎椩??灓摨潡楮??ち??????水???㈱名??㈱????つ???瀼摰潤楯?崾?戰爮?嬱???嵉??敃牎漮洲攰?儴???氱氱椸砰‵???卤瑯慩琾敝?剢? ̄?游朵敝氠?呵??啍猬椠湌杩?潘灄挬漠摚敯?猠敄煑甬攠湙捡敮獧?瑗漬?摚敨瑡敮捧琠?洬愠汊楩据椠潈甮猠??湬摓牣潡楮携?慡灳灴氠業捡慲瑫楥潴渭獷???渠?偯牢潩捬??潭晡?瑷桡敲?㈠び?????????湹琠?汯??潡湬昭??潴湷??潫洠浣略湮楴捲慡瑬楩潴湹猠????????匮礠摉湮攺祐???????㈠ぴ???″????????嬯摁潃楍??灮摴漧楬??は???????????ね????????????灥搠潅楮?嵩?扥牥?孩???崨??慅温朮????夠敄物楥浧慯?卉奅??匬攠稲攰爱?匮???挹?愱电朰栮汛楤湯????乤?杩爾愱洰?漱瀱挰漹搯敁?慅渮愲氰礱猹椮猰‰昰漲爳??湰摤牯潩椾摝?浢慲氾睛愸父敝?摓敵瑮攠捘琬椠潚湨??慧特塡楮癧????㈠?ど???????はㄠ???托物?嬠???嵄??潥潣摴晩敮汧氠潣睯?????偵潳略朠敩n Android applications using component-based control flow graph. In:Proc. of the 29th IFIP TC 11 Int'l Conf. on ICT Systems Security and Privacy Protection. Marrakech:Springer, 2014. 142-155.[doi:10.1007/978-3-642-55415-5_12]
    [87] Meng GZ, Xue YX, Xu ZZ, Liu Y, Zhang J, Narayanan A. Semantic modelling of Android malware for effective malware comprehension, detection, and classification. In:Proc. of the 25th Int'l Symp. on Software Testing and Analysis. Saarbrücken:ACM, 2016. 306-317.[doi:10.1145/2931037.2931043]
    [88] Crussell J, Gibler C, Chen H. Attack of the clones:Detecting cloned applications on Android markets. In:Proc. of the 17th European Symp. on Research in Computer Computer Security. Pisa:Springer, 2012. 37-54.[doi:10.1007/978-3-642-33167-1_3]
    [89] Wolfe B, Elish KO, Yao DF. Comprehensive behavior profiling for proactive Android malware detection. In:Proc. of the 17th Int'l Conf. on Information Security. Hong Kong:Springer, 2014. 328-344.[doi:10.1007/978-3-319-13257-0_19]
    [90] Chen K, Wang P, Lee Y, Wang XF, Zhang N, Huang HQ, Zou W, Liu P. Finding unknown malice in 10 seconds:Mass vetting for new threats at the Google-play scale. In:Proc. of the 24th USENIX Security Symp. Washington:USENIX Association, 2015. 659-674.
    [91] Zhang FF, Huang HQ, Zhu SC, Wu DH, Liu P. ViewDroid:Towards obfuscation-resilient mobile application repackaging detection. In:Proc. of the 2014 ACM Conf. on Security and Privacy in Wireless & Mobile Networks. Oxford:ACM, 2014. 25-36.
    [92] Zheng C, Zhu SX, Dai SF, Gu GF, Gong XR, Han XH, Zou W. SmartDroid:An automatic system for revealing UI-based trigger conditions in Android applications. In:Proc. of the 2nd ACM Workshop on Security and Privacy in Smartphones and Mobile Devices. Raleigh:ACM, 2012. 93-104.[doi:10.1145/2381934.2381950]
    [93] Conti G, Bratus S, Shubina A, Sangster B, Ragsdale R, Supan M, Lichtenberg A, Perez-Alemany R. Automated mapping of large binary objects using primitive fragment type classification. Digital Investigation, 2010, 7:S3-S12.
    [94] Yuan BG, Wang JF, Liu D, Guo W, Wu P, Bao XH. Byte-level malware classification based on Markov images and deep learning. Computers & Security, 2020, 92:101740.
    [95] Nataraj L, Karthikeyan S, Jacob G, Manjunath BS. Malware images:Visualization and automatic classification. In:Proc. of the 8th Int'l Symp. on Visualization for Cyber Security. Pittsburgh:ACM, 2011. 4.[doi:10.1145/2016904.2016908]
    [96] Xiao X, Yang S. An image-inspired and CNN-based Android malware detection approach. In:Proc. of the 34th IEEE/ACM Int'l Conf. on Automated Software Engineering (ASE). San Diego:IEEE, 2019. 1259-1261.[doi:10.1109/ASE.2019.00155]
    [97] Bruna J, Zaremba W, Szlam A, LeCun Y. Spectral networks and locally connected networks on graphs. arXiv:1312.6203, 2014.
    [98] Li HY, Di SM, Li ZJ, Chen L, Cao JN. Black-box Adversarial attack and defense on graph neural networks. In:Proc. of the 2022 IEEE 38th Int'l Conf. on Data Engineering (ICDE). Kuala Lumpur:IEEE, 2022. 1017-1030.[doi:10.1109/ICDE53745.2022.00081]
    [99] Lin XX, Zhou C, Wu J, Yang H, Wang HB, Cao YN, Wang B. Exploratory adversarial attacks on graph neural networks for semi-supervised node classification. Pattern Recognition, 2023, 133:109042.
    [100] Chen JY, Zhang DJ, Ming ZY, Huang KJ, Jiang WR, Cui C. GraphAttacker:A general multi-task graph attack framework. IEEE Trans. on Network Science and Engineering, 2022, 9(2):577-595.
    [101] Fan WQ, Xu H, Jin W, Liu XR, Tang XF, Wang SH, Li Q, Tang JL, Wang JP, Aggarwal C. Jointly attacking graph neural network and its explanations. In:Proc. of the 39th IEEE Int'l Conf. on Data Engineering (ICDE). Anaheim:IEEE, 2023. 654-667.
    [102] Liu ZH, Luo Y, Zang ZL, Li SZ. Surrogate representation learning with isometric mapping for gray-box graph adversarial attacks. In:Proc. of the 15th ACM Int'l Conf. on Web Search and Data Mining. Virtual Event:ACM, 2022. 591-598.
    [103] Wang BH, Pang M, Dong Y. Turning Strengths into Weaknesses:A certified robustness inspired attack framework against graph neural networks. In:Proc. of the 2023 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Vancouver:IEEE, 2023. 16394-16403.[doi:10.1109/CVPR52729.2023.01573]
    [104] Li JT, Xie T, Liang C, Xie FF, He XN, Zheng ZB. Adversarial attack on large scale graph. IEEE Trans. on Knowledge and Data Engineering, 2023, 35(1):82-95.
    [105] Sun YW, Wang SH, Tang XF, Hsieh TY, Honavar V. Adversarial attacks on graph neural networks via node injections:A hierarchical reinforcement learning approach. In:Proc. of the 2020 Web Conf. Taipei:ACM, 2020. 673-683.
    [106] Tao SC, Cao Q, Shen HW, Wu YF, Hou L, Sun F, Cheng XQ. Adversarial camouflage for node injection attack on graphs. Information Sciences, 2023, 694:119611.
    [107] Li JY, Zhang TY, Jin SM, Fardad M, Zafarani R. AdverSparse:An adversarial attack framework for deep spatial-temporal graph neural networks. In:Proc. of the 2022 IEEE Int'l Conf. on Acoustics, Speech and Signal Processing (ICASSP). Singapore:IEEE, 2022. 5857-5861.[doi:10.1109/ICASSP43922.2022.9747850]
    [108] Chen X, Li CR, Wang DR, Wen S, Zhang J, Nepal S, Xiang Y, Ren K. Android HIV:A study of repackaging malware for evading machine-learning detection. IEEE Trans. on Information Forensics and Security, 2020, 15:987-1001.
    [109] Papernot N, McDaniel P, Jha S, Fredrikson M, Celik ZB, Swami A. The limitations of deep learning in adversarial settings. In:Proc. of the 2016 IEEE European Symp. on Security
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李珩,吴棒,龚柱,高翠莹,袁巍,罗夏朴.安卓恶意软件对抗样本攻击技术综述.软件学报,,():1-30

复制
分享
文章指标
  • 点击次数:12
  • 下载次数: 18
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-11-02
  • 最后修改日期:2024-01-28
  • 在线发布日期: 2025-03-12
文章二维码
您是第19727118位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号