利用伪重叠判定机制的多层循环GCN跨域推荐
作者:
中图分类号:

TP309

基金项目:

国家自然科学基金(62262025); 江西省自然科学基金重点项目(20224ACB202012)


Multi-layer Recurrent GCN Cross-domain Recommendation with Pseudo-overlap Detection Mechanism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    跨域推荐(cross-domain recommendation, CDR)通过将密集评分辅助域中的用户-项目评分模式迁移到稀疏评分目标域中的评分数据集, 以缓解冷启动现象, 近年来得到广泛研究. 多数CDR算法所采用的基于单域推荐的聚类方法未有效利用重叠信息, 无法充分适应跨域推荐, 导致聚类结果不准确. 在跨域推荐中, 图卷积网络方法(graph convolution network, GCN)可充分利用节点间的关联, 提高推荐的准确性. 然而, 基于GCN的跨域推荐往往使用静态图学习节点嵌入, 忽视了用户的偏好会随推荐场景发生变化的情况, 导致模型在面对不同的推荐任务时表现不佳, 无法有效缓解数据稀疏性. 基于此, 提出一种利用伪重叠判定机制的多层循环GCN跨域推荐模型. 首先, 在社区聚类算法Louvain的基础上充分运用重叠数据, 设计一个伪重叠判定机制, 据此挖掘用户的信任关系以及相似用户社区, 从而提高聚类算法在跨域推荐中的适应能力及其准确性. 其次, 提出一个包含嵌入学习模块和图学习模块的多层循环GCN, 学习动态的域共享特征、域特有特征以及动态图结构, 并通过两模块的循环增强, 获取最新用户偏好, 从而缓解数据稀疏问题. 最后, 采用多层感知器(multi-layer perceptron, MLP)对用户-项目交互建模, 得到预测评分, 通过与12种相关模型在4组数据域上的对比结果发现, 所提方法是高效的, 在MRRNDCGHR指标上分别平均提高5.47%、3.44%、2.38%.

    Abstract:

    Cross-domain recommendation (CDR) alleviates the cold start problem by transferring the user-item rating patterns from a dataset in a dense rating auxiliary domain to one in a sparse rating target domain, and has been widely studied in recent years. The clustering methods based on single-domain recommendation adopted by most CDR algorithms fail to effectively utilize overlapping information and sufficiently adapt to CDR, resulting in inaccurate clustering results. In CDR, graph convolution network (GCN) methods can fully utilize the associations between nodes to improve recommendation accuracy. However, GCN-based CDR often employs static graph learning for node embedding, ignoring the fact that user preferences may change with different recommendation scenarios, which causes poor model performance across different recommendation tasks and ineffective mitigation of data sparsity. To this end, a multi-layer recurrent GCN CDR model based on a pseudo-overlap detection mechanism is proposed. Firstly, by fully leveraging overlapping data based on the community clustering algorithm Louvain, a pseudo-overlap detection mechanism is designed to mine user trust relationships and similar user communities, thereby enhancing the adaptability and accuracy of clustering algorithms in CDR. Secondly, a multi-layer recurrent GCN consisting of an embedding learning module and a graph learning module is proposed to learn dynamic domain-shared features, domain-specific features, and dynamic graph structures. By conducting iterative enhancement of the two modules, the latest user preferences are obtained to alleviate data sparsity. Finally, a multi-layer perceptron (MLP) is employed to model user-item interactions and obtain predicted ratings. Comparative results with 12 related models across four groups of data domains demonstrate the effectiveness of the proposed method, with average improvements of 5.47%, 3.44%, and 2.38% in MRR, NDCG, and HR metrics respectively.

    参考文献
    相似文献
    引证文献
引用本文

钱忠胜,王亚惠,俞情媛,范赋宇,付庭峰.利用伪重叠判定机制的多层循环GCN跨域推荐.软件学报,,():1-23

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-27
  • 最后修改日期:2024-07-01
  • 在线发布日期: 2025-02-26
文章二维码
您是第19728340位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号