基于组合负载预测模型的多租户数据库弹性伸缩方法
作者:
通讯作者:

刘海龙, E-mail: liuhailong@nwpu.edu.cn

中图分类号:

TP311

基金项目:

国家重点研发计划(2023YFB4503600); 国家自然科学基金(62172335); CCF-华为胡杨林基金(CCF-HuaweiDBIR0004B)


Elastic Scaling Method for Multi-tenant Databases Based on Hybrid Workload Prediction Model
Author:
  • XU Hai-Yang

    XU Hai-Yang

    School of Computer science, Northwestern Polytechnical University, Xi’an 710100, China;Key Laboratory of Big Data Storage and Management (Northwestern Polytechnical University), Ministry of Industry and Information Technology, Xi’an 710100, China;Xi’an Zhongxing New Software Co. Ltd., Xi’an 710100, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Hai-Long

    LIU Hai-Long

    School of Computer science, Northwestern Polytechnical University, Xi’an 710100, China;Key Laboratory of Big Data Storage and Management (Northwestern Polytechnical University), Ministry of Industry and Information Technology, Xi’an 710100, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Xian

    CHEN Xian

    School of Computer science, Northwestern Polytechnical University, Xi’an 710100, China;Key Laboratory of Big Data Storage and Management (Northwestern Polytechnical University), Ministry of Industry and Information Technology, Xi’an 710100, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Lei

    WANG Lei

    School of Computer science, Northwestern Polytechnical University, Xi’an 710100, China;Key Laboratory of Big Data Storage and Management (Northwestern Polytechnical University), Ministry of Industry and Information Technology, Xi’an 710100, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIN Ke

    JIN Ke

    School of Computer science, Northwestern Polytechnical University, Xi’an 710100, China;Key Laboratory of Big Data Storage and Management (Northwestern Polytechnical University), Ministry of Industry and Information Technology, Xi’an 710100, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HOU Shu-Feng

    HOU Shu-Feng

    School of Computer science, Northwestern Polytechnical University, Xi’an 710100, China;Key Laboratory of Big Data Storage and Management (Northwestern Polytechnical University), Ministry of Industry and Information Technology, Xi’an 710100, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Zhan-Huai

    LI Zhan-Huai

    School of Computer science, Northwestern Polytechnical University, Xi’an 710100, China;Key Laboratory of Big Data Storage and Management (Northwestern Polytechnical University), Ministry of Industry and Information Technology, Xi’an 710100, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    云环境下的多租户数据库重要特性之一是可伸缩性, 然而大部分的弹性伸缩技术难以针对复杂变化的负载进行有效的伸缩决策. 若能提前预测负载变化, 则能够准确地调整资源供给. 鉴于此, 提出了基于内存负载预测的多租户数据库弹性伸缩方法, 包括一种组合负载预测模型和一种弹性伸缩策略. 组合负载预测模型融合了卷积神经网络、长短期记忆网络和门控循环单元的优势, 可以比较精确地预测数据库集群内存负载需求; 弹性伸缩策略基于需求预测结果, 调整虚拟机数目, 保证资源供应处于合理范围. 与现有方法对比, 所提出的模型预测误差降低了8.7%–21.8%, 预测拟合度提高了4.6%. 在此基础上, 改进了贝叶斯优化算法, 用于该模型超参数调优, 解决了贝叶斯优化在离散解、连续解的组合域中效果较差的问题, 误差指标值降低了20%以上, 拟合度提高了1.04%. 实验结果表明, 与Kubernetes中应用最广泛的伸缩策略相比, 所提出的弹性伸缩方法避免了弹性伸缩的滞后性与资源浪费, 响应时间降低了8.12%, 延迟降低了9.56%.

    Abstract:

    One of the most important features of multi-tenant databases in cloud environments is scalability. However, most elastic scaling techniques struggle to make effective scaling decisions for dynamically changing loads. If load changes can be predicted in advance, resource supply can be accurately adjusted. Given this, this study proposes a load-prediction-based elastic scaling method for multi-tenant databases. It includes a combined load prediction model and an elastic scaling strategy. The load prediction model combines the advantages of convolutional neural networks, long short-term memory networks and gated recurrent units. It can accurately forecast memory requirements of database clusters. Based on the prediction results, the elastic scaling strategy adjusts the number of virtual machines to ensure that resource supply remains within a reasonable range. Compared to existing methods, the combined load prediction model can reduce prediction errors by 8.7% to 21.8% and improve prediction fitting degree by 4.6%. Furthermore, this study improves the Bayesian optimization algorithm for hyperparameter tuning of the combined prediction model. The improved hyperparameter tuning model reduces errors by above 20% and improves fitting degree by 1.04%, which proves that it can well address the poor performance of Bayesian optimization in combined domains of discrete and continuous solutions. Compared to the most widely used scaling strategy in Kubernetes, the proposed elastic scaling method reduces response time by 8.12% and latency by 9.56%. It can avoid the latency and the waste of resources to a large extent.

    参考文献
    [1] Zhao HQ, Lim H, Hanif M, Lee C. Predictive container auto-scaling for cloud-native applications. In: Proc. of the 2019 Int’l Conf. on Information and Communication Technology Convergence. Jeju: IEEE, 2019. 1280–1282. [doi: 10.1109/ICTC46691.2019.8939932]
    [2] Nguyen TT, Yeom YJ, Kim T, Park DH, Kim S. Horizontal pod autoscaling in Kubernetes for elastic container orchestration. Sensors, 2020, 20(16): 4621.
    [3] Sellami W, Hadj Kacem H, Hadj Kacem A. Dynamic provisioning of service composition in a multi-tenant SaaS environment. Journal of Network and Systems Management, 2020, 28(2): 367–397.
    [4] Zafeiropoulos A, Fotopoulou E, Filinis N, Papavassiliou S. Reinforcement learning-assisted autoscaling mechanisms for serverless computing platforms. Simulation Modelling Practice and Theory, 2022, 116: 102461.
    [5] Nouri SMR, Li H, Venugopal S, Guo WX, He MY, Tian WH. Autonomic decentralized elasticity based on a reinforcement learning controller for cloud applications. Future Generation Computer Systems, 2019, 94: 765–780.
    [6] Ghobaei-Arani M, Jabbehdari S, Pourmina MA. An autonomic resource provisioning approach for service-based cloud applications: A hybrid approach. Future Generation Computer Systems, 2018, 78: 191–210.
    [7] Horovitz S, Arian Y. Efficient cloud auto-scaling with SLA objective using Q-learning. In: Proc. of the 6th IEEE Int’l Conf. on Future Internet of Things and Cloud. Barcelona: IEEE, 2018. 85–92. [doi: 10.1109/FiCloud.2018.00020]
    [8] Wei Y, Kudenko D, Liu SJ, Pan L, Wu L, Meng XX. A reinforcement learning based auto-scaling approach for SaaS providers in dynamic cloud environment. Mathematical Problems in Engineering, 2019, 2019(1): 5080647.
    [9] 吴晓军, 张成, 原盛, 任晓春, 王玮. 基于强化学习的云资源混合式弹性伸缩算法. 西安交通大学学报, 2022, 56(1): 142–150.
    Wu XJ, Zhang C, Yuan S, Ren XC, Wang W. Blended elastic scaling method for cloud resources following reinforcement learning. Journal of Xi’an Jiaotong University, 2022, 56(1): 142–150 (in Chinese with English abstract).
    [10] Song SH, Pan L, Liu SJ. A Q-learning based auto-scaling approach for provisioning big data analysis services in cloud environments. Future Generation Computer Systems, 2024, 154: 140–150.
    [11] Kardani-Moghaddam S, Buyya R, Ramamohanarao K. ADRL: A hybrid anomaly-aware deep reinforcement learning-based resource scaling in clouds. IEEE Trans. on Parallel and Distributed Systems, 2021, 32(3): 514–526.
    [12] Garí Y, Monge DA, Pacini E, Mateos C, García Garino C. Reinforcement learning-based application Autoscaling in the cloud: A survey. Engineering Applications of Artificial Intelligence, 2021, 102: 104288.
    [13] Yu Y, Si XS, Hu CH, Zhang JX. A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation, 2019, 31(7): 1235–1270.
    [14] Hoseinzade E, Haratizadeh S. CNNpred: CNN-based stock market prediction using a diverse set of variables. Expert Systems with Applications, 2019, 129: 273–285.
    [15] Vidal A, Kristjanpoller W. Gold volatility prediction using a CNN-LSTM approach. Expert Systems with Applications, 2020, 157: 113481.
    [16] Ouhame S, Hadi Y, Ullah A. An efficient forecasting approach for resource utilization in cloud data center using CNN-LSTM model. Neural Computing and Applications, 2021, 33(16): 10043–10055.
    [17] Du L, Gao RB, Suganthan PN, Wang DZW. Bayesian optimization based dynamic ensemble for time series forecasting. Information Sciences, 2022, 591: 155–175.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐海洋,刘海龙,陈先,王磊,金轲,侯舒峰,李战怀.基于组合负载预测模型的多租户数据库弹性伸缩方法.软件学报,2025,36(3):981-994

复制
分享
文章指标
  • 点击次数:599
  • 下载次数: 1575
  • HTML阅读次数: 101
  • 引用次数: 0
历史
  • 收稿日期:2024-05-27
  • 最后修改日期:2024-07-16
  • 在线发布日期: 2024-09-13
文章二维码
您是第19754353位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号