FBO: 基于联邦学习的云数据库旋钮调优技术
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

王宏志, E-mail: wangzh@hit.edu.cn

中图分类号:

TP311

基金项目:

国家自然科学基金(62232005, 62202126, 92267203)


FBO: Cloud Database Knob-tuning Technique Based on Federated learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来, 随着软硬件的发展, 数据库上云已经成为了新兴发展趋势, 能够降低中小型企业和个人用户的数据库运维成本. 进一步地, 云数据库的发展带来了庞大的运维市场需求, 研究者们提出了诸多数据库自调优技术来支持数据库旋钮自动优化. 为了提高调优效率, 现有技术从仅关注调优问题本身, 到开始关注如何复用历史经验来为当前数据库实例找到最佳参数配置. 然而, 随着云数据库的发展, 用户逐渐提高了对隐私保护的要求, 期望在拥有高效数据存取效率的同时避免隐私泄露. 现有方法并未考虑到保护用户的历史调优经验隐私, 可能会使得用户负载特征被感知, 带来经济损失. 详细分析了云数据库调优任务的特点, 有机结合服务端和用户端, 提出了一种基于联邦学习的云数据库旋钮调优技术. 首先, 为了解决联邦学习中数据异构的问题, 提出了基于元特征匹配的经验筛选方法提前将数据分布差异较大的历史经验剔除, 以提高联邦学习的效率. 为了实现保护用户隐私, 结合云数据库服务特性, 提出了以节点端为训练中心的联邦贝叶斯调优算法, 通过随机傅里叶特征来完成保证调优经验不失真的前提下保护用户隐私. 在多个公开 benchmark 上的结果表明, 方法可以达到与现有调优方法相当的调优结果, 并且由于复用了历史经验, 可以大大提高调优效率.

    Abstract:

    In recent years, with the development of software and hardware, migrating databases to the cloud has become an emerging development trend and can reduce database operation and maintenance costs for small and medium-sized enterprises and individual users. Furthermore, the development of cloud databases has led to a massive market demand for database operation and maintenance. Researchers have proposed many database self-tuning technologies to support automatic optimization of database knobs. To improve tuning efficiency, existing technologies have shifted from focusing solely on the tuning problem itself to focusing on how to reuse historical experience to find the optimal parameter configuration for the current database instance. However, with the development of cloud databases, users have gradually increased their requirements for privacy protection, hoping to avoid privacy leakage while having efficient data access efficiency. Existing methods do not consider protecting the privacy of users’ historical tuning experience, which may cause user load characteristics to be perceived, causing economic losses. This study analyzes the characteristics of cloud database tuning tasks in detail, organically combines the server side and the user side, and proposes a cloud database knob tuning technology based on federated learning. First, to solve data heterogeneity in federated learning, this study proposes an experience screening method based on meta-feature matching to eliminate historical experiences with large differences in data distribution in advance to improve the efficiency of federated learning. To protect user privacy, this study organically combines the characteristics of cloud database services and proposes a federated Bayesian optimization algorithm with the node end as the training center. Through random Fourier features, it achieves user privacy protection without distorting the tuning experience. The results on extensive public benchmarks present that the proposed method could achieve competitive tuning performance compared with existing tuning methods. Moreover, due to the reuse of historical experience, it can greatly improve tuning efficiency.

    参考文献
    相似文献
    引证文献
引用本文

燕钰,戴志宇,吕泽楷,王宏志. FBO: 基于联邦学习的云数据库旋钮调优技术.软件学报,2025,36(3):1-20

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-27
  • 最后修改日期:2024-07-16
  • 录用日期:
  • 在线发布日期: 2024-09-13
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号