无人机多传感器数据融合研究综述
作者:
中图分类号:

TP393

基金项目:

国家自然科学基金青年科学基金(72201275); 第八届中国科协青年人才托举工程(2022QNRC001)


Review on Multi-sensor Data Fusion Research for Unmanned Aerial Vehicles
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [178]
  • | | | |
  • 文章评论
    摘要:

    随着相关技术的快速发展, 无人机所搭载的传感器愈发精确和多样, 赋予了无人机强大的感知能力, 也使得多传感器数据的处理分析成为无人机应用的一大挑战. 数据融合是解决这一问题的关键技术, 其通过检测、关联、组合、估计的流程实现多传感器数据的融合利用, 获取准确的无人机状态和目标信息为决策提供支撑. 对无人机的多传感器数据融合研究展开综述: 介绍无人机系统组成; 回顾并分类无人机多传感器数据融合方法, 在此基础上分析比较各类方法的特点; 归纳概述无人机多传感器数据融合在不同领域中的应用现状; 最后展望无人机多传感器数据融合的未来发展方向.

    Abstract:

    With the rapid development of related technologies, sensors carried by unmanned aerial vehicles (UAVs) are becoming more precise and multifarious, which endows UAVs with strong sensing ability, and poses a large challenge to the processing and analysis of multi-sensor data in UAV applications. Data fusion is the key technology to solve this problem, which realizes the fusion and utilization of multi-sensor data through the process of detection, association, combination and estimation, and obtains accurate UAV state and target information to support decision-making. This study reviews the multi-sensor data fusion research for UAVs. It introduces UAV system components, reviews and classifies UAV multi-sensor data fusion methods, analyzes and compares the characteristics of various methods, summarizes the applications of UAV multi-sensor data fusion in different fields, and finally looks forward to the future development directions of UAV multi-sensor data fusion.

    参考文献
    [1] 何道敬, 杜晓, 乔银荣, 朱耀康, 樊强, 罗旺. 无人机信息安全研究综述. 计算机学报, 2019, 42(5): 1076–1094.
    He DJ, Du X, Qiao YR, Zhu YK, Fan Q, Luo W. A survey on cyber security of unmanned aerial vehicles. Chinese Journal of Computers, 2019, 42(5): 1076–1094 (in Chinese with English abstract).
    [2] 朱超磊, 金钰, 王靖娴, 袁成. 2022年国外军用无人机装备技术发展综述. 战术导弹技术, 2023(3): 11–25, 31.
    Zhu CL, Jin Y, Wang JX, Yuan C. Overview of the development of foreign military UAV systems and technology in 2022. Tactical Missile Technology, 2023(3): 11–25, 31 (in Chinese with English abstract).
    [3] Saha D, Pattanayak D, Mandal PS. Surveillance of uneven surface with self-organizing unmanned aerial vehicles. IEEE Trans. on Mobile Computing, 2022, 21(4): 1449–1462.
    [4] Li YJ, Qiao G, Popov S, Cui XB, Florinsky IV, Yuan XH, Wang LJ. Unmanned aerial vehicle remote sensing for antarctic research: A review of progress, current applications, and future use cases. IEEE Geoscience and Remote Sensing Magazine, 2023, 11(1): 73–93.
    [5] Li HZ, Chen YL, Liu J, Zhang Z, Zhu H. Unmanned aircraft system applications in damage detection and service life prediction for bridges: A review. Remote Sensing, 2022, 14(17): 4210.
    [6] Bijjahalli S, Sabatini R, Gardi A. Advances in intelligent and autonomous navigation systems for small UAS. Progress in Aerospace Sciences, 2020, 115: 100617.
    [7] Khan MA, El Sayed H, Malik S, Zia T, Khan J, Alkaabi N, Ignatious H. Level-5 autonomous driving—Are we there yet? A review of research literature. ACM Computing Surveys, 2023, 55(2): 27.
    [8] Gandhi A, Adhvaryu K, Poria S, Cambria E, Hussain A. Multimodal sentiment analysis: A systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions. Information Fusion, 2023, 91: 424–444.
    [9] Qin Z, Zhao PB, Zhuang TM, Deng FH, Ding Y, Chen DJ. A survey of identity recognition via data fusion and feature learning. Information Fusion, 2023, 91: 694–712.
    [10] Liu YB, Fan LX, Zhang CQ, Zhou T, Xiao ZT, Geng L, Shen DG. Incomplete multi-modal representation learning for Alzheimer’s disease diagnosis. Medical Image Analysis, 2021, 69: 101953.
    [11] 卢艳军, 刘飒. 基于视觉的无人机导航技术研究. 自动化仪表, 2021, 42(4): 1–7.
    Lu YJ, Liu S. Research on UAV navigation technology based on vision. Process Automation Instrumentation, 2021, 42(4): 1–7 (in Chinese with English abstract).
    [12] Dissanayaka D, Wanasinghe TR, de Silva O, Jayasiri A, Mann GKI. Review of navigation methods for UAV-based parcel delivery. IEEE Trans. on Automation Science and Engineering, 2024, 21(1): 1068–1082.
    [13] Ye XY, Song FJ, Zhang ZY, Zeng QH. A review of small UAV navigation system based on multisource sensor fusion. IEEE Sensors Journal, 2023, 23(17): 18926–18948.
    [14] 陈唯实, 黄毅峰, 卢贤锋. 多传感器融合的无人机探测技术应用综述. 现代雷达, 2020, 42(6): 15–29.
    Chen WS, Huang YF, Lu XF. Survey on application of multi-sensor fusion in UAV detection technology. Modern Radar, 2020, 42(6): 15–29 (in Chinese with English abstract).
    [15] Yao H, Qin RJ, Chen XY. Unmanned aerial vehicle for remote sensing applications—A review. Remote Sensing, 2019, 11(12): 1443.
    [16] Jurado JM, López A, Pádua L, Sousa JJ. Remote sensing image fusion on 3D scenarios: A review of applications for agriculture and forestry. Int’l Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102856.
    [17] 李学龙. 无人机续航能力. 中国科学: 信息科学, 2023, 53(7): 1233–1261.
    Li XL. Endurance of unmanned aerial vehicles. Scientia Sinica Informationis, 2023, 53(7): 1233–1261 (in Chinese with English abstract).
    [18] 宋晨晖. 民用无人机应用进展. 机电工程技术, 2018, 47(11): 149–152.
    Song CH. The civil UAV aapplication progress. Mechanical & Electrical Engineering Technology, 2018, 47(11): 149–152 (in Chinese with English abstract).
    [19] Components-DJI. DJI Official. 2024. https://www.dji.com/products/components
    [20] Guo K, Liu LS, Shi SH, Liu DT, Peng XY. UAV sensor fault detection using a classifier without negative samples: A local density regulated optimization algorithm. Sensors, 2019, 19(4): 771.
    [21] 叶霞, 谢尚俊, 崔浩浩, 盛成熠, 韩江涛, 周诗捷, 沈思橙, 陈在娥, 李胜利. 基于深度相机的无人机全自主避障系统. 电视技术, 2023, 47(5): 58–63.
    Ye X, Xie SJ, Cui HH, Sheng CY, Han JT, Zhou SJ, Shen SC, Chen ZE, Li SL. Autonomous obstacle avoidance system for unmanned aerial vehicles based on depth camera. Video Engineering, 2023, 47(5): 58–63 (in Chinese with English abstract).
    [22] 相晓嘉, 谭沁, 王菖, 周晗, 唐邓清, 牛轶峰. 无人机先进地面站关键技术综述. 国防科技大学学报, 2023, 45(2): 1–14.
    Xiang XJ, Tan Q, Wang C, Zhou H, Tang DQ, Niu YF. Survey on key technologies of UAV advanced ground stations. Journal of National University of Defense Technology, 2023, 45(2): 1–14 (in Chinese with English abstract).
    [23] Huang X, Dong XY, Ma J, Liu K, Ahmed S, Lin JL, Qiu BJ. The improved A* obstacle avoidance algorithm for the plant protection UAV with millimeter wave radar and monocular camera data fusion. Remote Sensing, 2021, 13(17): 3364.
    [24] 王激扬, 张航, 宋闯, 易华. 无人飞行器的多源信息融合技术发展综述. 战术导弹技术, 2019(2): 106–112.
    Wang JY, Zhang H, Song C, Yi H. Overview of the development of multi-source information fusion technology for UAV. Tactical Missile Technology, 2019(2): 106–112 (in Chinese with English abstract).
    [25] Meng T, Jing XY, Yan Z, Pedrycz W. A survey on machine learning for data fusion. Information Fusion, 2020, 57: 115–129.
    [26] Kalman RE. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 1960, 82(1): 35–45.
    [27] Spurny V, Pritzl V, Walter V, Petrlik M, Baca T, Stepan P, Zaitlik D, Saska M. Autonomous firefighting inside buildings by an unmanned aerial vehicle. IEEE Access, 2021, 9: 15872–15890.
    [28] Mei CB, Fan ZH, Zhu QJ, Yang PX, Hou ZH, Jin HL. A novel scene matching navigation system for UAVs based on vision/inertial fusion. IEEE Sensors Journal, 2023, 23(6): 6192–6203.
    [29] Cui C, Zhao JK. Observability analysis based on QR decomposition and adaptive information fusion mechanism for low-cost multi-rotor UAVs. IEEE Sensors Journal, 2022, 22(6): 5939–5951.
    [30] Xiong K, Zhou P, Wei CL. Autonomous navigation of unmanned aircraft using space target LOS measurements and QLEKF. Sensors, 2022, 22(18): 6992.
    [31] Julier S, Uhlmann J, Durrant-Whyte HF. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. on Automatic Control, 2000, 45(3): 477–482.
    [32] Julier SJ, Uhlmann JK. Unscented filtering and nonlinear estimation. Proc. of the IEEE, 2004, 92(3): 401–422.
    [33] Peng J, Zhang P, Zheng LX, Tan J. UAV positioning based on multi-sensor fusion. IEEE Access, 2020, 8: 34455–34467.
    [34] Guo K, Ye ZS, Liu DT, Peng XY. UAV flight control sensing enhancement with a data-driven adaptive fusion model. Reliability Engineering & System Safety, 2021, 213: 107654.
    [35] Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Trans. on Automatic Control, 2009, 54(6): 1254–1269.
    [36] Ge QB, Cheng Y, Yao G, Chen S, Zhu Y. Credible Gaussian sum cubature Kalman filter based on non-Gaussian characteristic analysis. Neurocomputing, 2024, 565: 126922.
    [37] Gao BB, Hu GG, Zhong YM, Zhu XH. Cubature rule-based distributed optimal fusion with identification and prediction of kinematic model error for integrated UAV navigation. Aerospace Science and Technology, 2021, 109: 106447.
    [38] Solà J. Quaternion kinematics for the error-state Kalman filter. arXiv:1711.02508, 2017.
    [39] Zhao XX, Meng Y, Qi F, Wang L, Zhu XY. A vertical channel-enhanced fusion method based on RINS and barometric altimeter for UAVs in GNSS denial environments. IEEE Trans. on Instrumentation and Measurement, 2023, 72: 8504212.
    [40] 程水英. 无味变换与无味卡尔曼滤波. 计算机工程与应用, 2008, 44(24): 25–35.
    Cheng SY. Unscented transformation and unscented Kalman filtering. Computer Engineering and Applications, 2008, 44(24): 25–35 (in Chinese with English abstract).
    [41] 张洪华, 刘璇, 陈付豪, 李文彬, 张建华. 基于图优化的SLAM后端优化研究与发展. 计算机应用研究, 2019, 36(1): 11–17. [doi: 10.19734/j.issn.1001-3695.2017.12.0842]
    Zhang HH, Liu X, Chen FH, Li WB Zhang JH. Research and development of SLAM back-end optimization based on graph optimization. Application Research of Computers 2019, 36(1): 11–17 (in Chinese with English abstract). [doi: 10.19734/j.issn.1001-3695.2017.12.0842]
    [42] Abaspur Kazerouni I, Fitzgerald L, Dooly G, Toal D. A survey of state-of-the-art on visual SLAM. Expert Systems with Applications, 2022, 205: 117734.
    [43] Tian Y, Yue H, Yang B, Ren J. Unmanned aerial vehicle visual simultaneous localization and mapping: A survey. Journal of Physics: Conf. Series, 2022, 2278(1): 012006.
    [44] Gupta A, Fernando X. Simultaneous localization and mapping (SLAM) and data fusion in unmanned aerial vehicles: Recent advances and challenges. Drones, 2022, 6(4): 85.
    [45] 李云天, 穆荣军, 单永志. 无人系统视觉SLAM技术发展现状简析. 控制与决策, 2021, 36(3): 513–522.
    Li YT, Mu RJ, Shan YZ. A survey of visual SLAM in unmanned systems. Control and Decision, 2021, 36(3): 513–522 (in Chinese with English abstract).
    [46] Brown DC. A solution to the general problem of multiple station analytical stereotriangulation. 1958. https://digital.hagley.org/08206139_solution
    [47] Lu F, Milios E. Globally consistent range scan alignment for environment mapping. Autonomous Robots, 1997, 4(4): 333–349.
    [48] Kschischang FR, Frey BJ, Loeliger HA. Factor graphs and the sum-product algorithm. IEEE Trans. on Information Theory, 2001, 47(2): 498–519.
    [49] 施俊屹, 查富生, 孙立宁, 郭伟, 王鹏飞, 李满天. 移动机器人视觉惯性SLAM研究进展. 机器人, 2020, 42(6): 734–748.
    Shi JY, Zha FS, Sun LN, Guo W, Wang PF, Li MT. A survey of visual-inertial SLAM for mobile robots. Robot, 2020, 42(6): 734–748 (in Chinese with English abstract).
    [50] Qin T, Li PL, Shen SJ. VINS-Mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. on Robotics, 2018, 34(4): 1004–1020.
    [51] Qin T, Cao SZ, Pan J, Shen SJ. A general optimization-based framework for global pose estimation with multiple sensors. arXiv:1901.03642, 2019.
    [52] 张怀捷, 马静雅, 刘浩源, 郭品, 邓慧超, 徐坤, 丁希仑. 视觉与惯性融合的多旋翼飞行机器人室内定位技术. 航空学报, 2023, 44(5): 426964.
    Zhang HJ, Ma JY, Liu HY, Guo P, Deng HC, Xu K, Ding XL. Indoor positioning technology of multi-rotor flying robot based on visual-inertial fusion. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 426964 (in Chinese with English abstract).
    [53] Lin HY, Zhan JR. GNSS-denied UAV indoor navigation with UWB incorporated visual inertial odometry. Measurement, 2023, 206: 112256.
    [54] Henawy J, Li ZG, Yau WY, Seet G. Accurate IMU factor using switched linear systems for VIO. IEEE Trans. on Industrial Electronics, 2021, 68(8): 7199–7208.
    [55] Sankey JB, Sankey TT, Li J, Ravi S, Wang G, Caster J, Kasprak A. Quantifying plant-soil-nutrient dynamics in rangelands: Fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached desert grassland. Remote Sensing of Environment, 2021, 253: 112223.
    [56] Elamin A, El-Rabbany A. UAV-based multi-sensor data fusion for urban land cover mapping using a deep convolutional neural network. Remote Sensing, 2022, 14(17): 4298.
    [57] Gao S, Yuan XP, Gan S, Yang YF, Yuan XY. Experimental study on precise recognition of settlements in mountainous areas based on UAV image and LiDAR point cloud. Journal of the Indian Society of Remote Sensing, 2022, 50(10): 1827–1840.
    [58] Motayyeb S, Samadzedegan F, Dadrass Javan F, Hosseinpour H. Fusion of UAV-based infrared and visible images for thermal leakage map generation of building facades. Heliyon, 2023, 9(3): e14551.
    [59] Li J, Peng YX, Jiang T. Embedded real-time infrared and visible image fusion for UAV surveillance. Journal of Real-time Image Processing, 2021, 18(6): 2331–2345.
    [60] Wang CQ, Luo D, Liu Y, Xu B, Zhou YJ. Near-surface pedestrian detection method based on deep learning for UAVs in low illumination environments. Optical Engineering, 2022, 61(2): 023103.
    [61] 车荧璞, 王庆, 李世林, 李保国, 马韫韬. 基于超分辨率重建和多模态数据融合的玉米表型性状监测. 农业工程学报, 2021, 37(20): 169–178.
    Che YP, Wang Q, Li SL, Li BG, Ma YT. Monitoring of maize phenotypic traits using super-resolution reconstruction and multimodal data fusion. Trans. of the Chinese Society of Agricultural Engineering, 2021, 37(20): 169–178 (in Chinese with English abstract).
    [62] Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans. on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610–621.
    [63] Nichol JE, Sarker MLR. Improved biomass estimation using the texture parameters of two high-resolution optical sensors. IEEE Trans. on Geoscience and Remote Sensing, 2011, 49(3): 930–948.
    [64] Zhong H, Lin WS, Liu HR, Ma N, Liu KK, Cao RZ, Wang TT, Ren ZZ. Identification of tree species based on the fusion of UAV hyperspectral image and LiDAR data in a coniferous and broad-leaved mixed forest in northeast China. Frontiers in Plant Science, 2022, 13: 964769.
    [65] Maimaitijiang M, Sagan V, Sidike P, Hartling S, Esposito F, Fritschi FB. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sensing of Environment, 2020, 237: 111599.
    [66] 阙艳红, 吴苏, 姜明梁, 张成才, 李风波, 李炎朋. 融合多源遥感数据的夏玉米土壤水分反演方法对比研究. 节水灌溉, 2024(3): 91–98.
    Que YH, Wu S, Jiang ML, Zhang CC, Li FB, Li YM. Comparative study on soil moisture retrieval methods for summer maize using multi-source remote sensing data fusion. Water Saving Irrigation, 2024(3): 91–98 (in Chinese with English abstract).
    [67] Fei SP, Hassan MA, Xiao YG, Su X, Chen Z, Cheng Q, Duan FY, Chen RQ, Ma YT. UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precision Agriculture, 2023, 24(1): 187–212.
    [68] Xu L, Zhou LF, Meng R, Zhao F, Lv ZG, Xu BY, Zeng LL, Yu X, Peng SB. An improved approach to estimate ratoon rice aboveground biomass by integrating UAV-based spectral, textural and structural features. Precision Agriculture, 2022, 23(4): 1276–1301.
    [69] Zhu WX, Sun ZG, Huang YH, Yang T, Li J, Zhu KY, Zhang JQ, Yang B, Shao CX, Peng JB, Li SJ, Hu HL, Liao XH. Optimization of multi-source UAV RS agro-monitoring schemes designed for field-scale crop phenotyping. Precision Agriculture, 2021, 22(6): 1768–1802.
    [70] Zhang XP, He ZZ, Ma Z, Jun P, Yang K. VIAE-net: An end-to-end altitude estimation through monocular vision and inertial feature fusion neural networks for UAV autonomous landing. Sensors, 2021, 21(18): 6302.
    [71] 李明辉, 马文凯, 周翊民, 叶玲见. 基于多传感器融合的无人机生命搜寻方法. 郑州大学学报(工学版), 2023, 44(2): 61–67.
    Li MH, Ma WK, Zhou YM, Ye LJ. UAV life search method based on multi-sensor fusion. Journal of Zhengzhou University (Engineering Science), 2023, 44(2): 61–67 (in Chinese with English abstract).
    [72] Su XY, Tao LF, Liu HM, Wang LZ, Suo ML. Real-time hierarchical risk assessment for UAVs based on recurrent fusion autoencoder and dynamic FCE: A hybrid framework. Applied Soft Computing, 2021, 106: 107286.
    [73] Xia FL, Lou ZX, Sun D, Li HL, Quan LZ. Weed resistance assessment through airborne multimodal data fusion and deep learning: A novel approach towards sustainable agriculture. Int’l Journal of Applied Earth Observation and Geoinformation, 2023, 120: 103352.
    [74] Blom HAP, Bar-Shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans. on Automatic Control, 1988, 33(8): 780–783.
    [75] Carlson NA. Federated square root filter for decentralized parallel processors. IEEE Trans. on Aerospace and Electronic Systems, 1990, 26(3): 517–525.
    [76] Liu XH, Liu XX, Zhang WG, Yang Y. Interacting multiple model UAV navigation algorithm based on a robust cubature Kalman filter. IEEE Access, 2020, 8: 81034–81044.
    [77] Youn W, Choi H, Cho A, Kim S, Rhudy MB. Accelerometer fault-tolerant model-aided state estimation for high-altitude long-endurance UAV. IEEE Trans. on Instrumentation and Measurement, 2020, 69(10): 8539–8553.
    [78] 姜南. 基于联邦卡尔曼滤波的INS/GPS/DVL组合导航容错算法研究 [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2020.
    Jiang N. Research on INS/GPS/DVL integrated navigation fault tolerance algorithm based on federal Kalman filter [MS. Thesis]. Harbin: Harbin Engineering University, 2020 (in Chinese with English abstract).
    [79] Yang Y, Liu XX, Zhang WG, Liu XH, Guo YC. Multilayer low-cost sensor local-global filtering fusion integrated navigation of small UAV. IEEE Sensors Journal, 2022, 22(18): 17550–17564.
    [80] Dai J, Hao XY, Liu SL, Ren ZB. Research on UAV robust adaptive positioning algorithm based on IMU/GNSS/VO in complex scenes. Sensors, 2022, 22(8): 2832.
    [81] Bultmann S, Quenzel J, Behnke S. Real-time multi-modal semantic fusion on unmanned aerial vehicles. In: Proc. of the 2021 European Conf. on Mobile Robots (ECMR). Bonn: IEEE, 2021. 1–8. [doi: 10.1109/ECMR50962.2021.9568812]
    [82] Bultmann S, Quenzel J, Behnke S. Real-time multi-modal semantic fusion on unmanned aerial vehicles with label propagation for cross-domain adaptation. Robotics and Autonomous Systems, 2023, 159: 104286.
    [83] Deng HL, Lu Y, Yang T, Liu ZY, Chen JC. Unmanned aerial vehicles anomaly detection model based on sensor information fusion and hybrid multimodal neural network. Engineering Applications of Artificial Intelligence, 2024, 132: 107961.
    [84] Kerkech M, Hafiane A, Canals R. Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach. Computers and Electronics in Agriculture, 2020, 174: 105446.
    [85] Ochoa-de-Eribe-Landaberea A, Zamora-Cadenas L, Peñagaricano-Muñoa O, Velez I. UWB and IMU-based UAV’s assistance system for autonomous landing on a platform. Sensors, 2022, 22(6): 2347.
    [86] Donati C, Mammarella M, Comba L, Biglia A, Gay P, Dabbene F. 3D distance filter for the autonomous navigation of UAVs in agricultural scenarios. Remote Sensing, 2022, 14(6): 1374.
    [87] Yang Y, Liu XX, Liu XH, Guo YC, Zhang WG. Model-free integrated navigation of small fixed-wing UAVs full state estimation in wind disturbance. IEEE Sensors Journal, 2022, 22(3): 2771–2781.
    [88] Negru SA, Geragersian P, Petrunin I, Guo WS. Resilient multi-sensor UAV navigation with a hybrid federated fusion architecture. Sensors, 2024, 24(3): 981.
    [89] You WD, Li FB, Liao LQ, Huang ML. Data fusion of UWB and IMU based on unscented Kalman filter for indoor localization of quadrotor UAV. IEEE Access, 2020, 8: 64971–64981.
    [90] Dai J, Liu SL, Hao XY, Ren ZB, Yang X. UAV localization algorithm based on factor graph optimization in complex scenes. Sensors, 2022, 22(15): 5862.
    [91] Sun KC, Zeng QH, Liu JY, Qiu WQ, Shi JH. Modified attitude factor graph fusion method for unmanned helicopter under atmospheric disturbance. Chinese Journal of Aeronautics, 2022, 35(6): 285–297.
    [92] Liu XH, Liu XX, Yang Y, Guo YC, Zhang WG. Robust variational Bayesian method-based SINS/GPS integrated system. Measurement, 2022, 193: 110893.
    [93] Wang ZY, Li N, Wang Z, Zhu FC, Du X. An adaptive federated filter based on variational Bayes with application to multisource navigation. IEEE Sensors Journal, 2023, 23(9): 9859–9870.
    [94] Moon S, Youn W, Bang H. Novel deep-learning-aided multimodal target tracking. IEEE Sensors Journal, 2021, 21(18): 20730–20739.
    [95] Ye XY, Zeng YF, Zeng QH, Zou YJ. Airspeed-aided state estimation algorithm of small fixed-wing UAVs in GNSS-denied environments. Sensors, 2022, 22(9): 3156.
    [96] 程擎, 李怡恒, 鲁合德. 基于扩展卡尔曼滤波的无人机辅助定位研究. 电光与控制, 2023, 30(12): 93–97, 103.
    Cheng Q, Li YH, Lu HD. UAV-aided localization based on extended Kalman filtering. Electronics Optics & Control, 2023, 30(12): 93–97, 103 (in Chinese with English abstract).
    [97] Bassolillo SR, D’Amato E, Notaro I, Ariante G, del Core G, Mattei M. Enhanced attitude and altitude estimation for indoor autonomous UAVs. Drones, 2022, 6(1): 18.
    [98] Du H, Wang W, Xu CW, Xiao R, Sun CY. Real-time onboard 3D state estimation of an unmanned aerial vehicle in multi-environments using multi-sensor data fusion. Sensors, 2020, 20(3): 919.
    [99] Lee JC, Chen CC, Shen CT, Lai YC. Landmark-based scale estimation and correction of visual inertial odometry for VTOL UAVs in a GPS-denied environment. Sensors, 2022, 22(24): 9654.
    [100] Dong X, Gao YZ, Guo JL, Zuo SY, Xiang JW, Li DC, Tu Z. An integrated UWB-IMU-vision framework for autonomous approaching and landing of UAVs. Aerospace, 2022, 9(12): 797.
    [101] Zhang KY, Chen PP, Ma TB, Gao SW. On-demand precise tracking for energy-constrained UAVs in underground coal mines. IEEE Trans. on Instrumentation and Measurement, 2022, 71: 5500814.
    [102] Xu XG, Fan LL, Li ZH, Meng Y, Feng HK, Yang H, Xu B. Estimating leaf nitrogen content in corn based on information fusion of multiple-sensor imagery from UAV. Remote Sensing, 2021, 13(3): 340.
    [103] Li JT, Schachtman DP, Creech CF, Wang L, Ge YF, Shi YY. Evaluation of UAV-derived multimodal remote sensing data for biomass prediction and drought tolerance assessment in bioenergy sorghum. The Crop Journal, 2022, 10(5): 1363–1375.
    [104] Cheng MH, Jiao XY, Liu YD, Shao MC, Yu X, Bai Y, Wang ZX, Wang SY, Tuohuti N, Liu SB, Shi L, Yin DM, Huang X, Nie CW, Jin XL. Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning. Agricultural Water Management, 2022, 264: 107530.
    [105] 张少华, 段剑钊, 贺利, 井宇航, Schulthess UC, Lashkari A, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究. 作物学报, 2022, 48(7): 1746–1760.
    Zhang SH, Duan JZ, He L, Jing YH, Schulthess UC, Lashkari A, Guo TC, Wang YH, Feng W. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion. Acta Agronomica Sinica, 2022, 48(7): 1746–1760 (in Chinese with English abstract).
    [106] Zhang Y, Yang YZ, Zhang QW, Duan RQ, Liu JQ, Qin YC, Wang XZ. Toward multi-stage phenotyping of soybean with multimodal UAV sensor data: A comparison of machine learning approaches for leaf area index estimation. Remote Sensing, 2022, 15(1): 7.
    [107] Zhang LC, Sun BS, Zhao DN, Shan CF, Wang GB, Song CC, Chen PC, Lan YB. Prediction of cotton FPAR and construction of defoliation spraying prescription map based on multi-source UAV images. Computers and Electronics in Agriculture, 2024, 220: 108897.
    [108] Wu S, Deng L, Guo LJ, Wu YJ. Wheat leaf area index prediction using data fusion based on high-resolution unmanned aerial vehicle imagery. Plant Methods, 2022, 18(1): 68.
    [109] Liu SB, Jin XL, Nie CW, Wang SY, Yu X, Cheng MH, Shao MC, Wang ZX, Tuohuti N, Bai Y, Liu YD. Estimating leaf area index using unmanned aerial vehicle data: Shallow vs. deep machine learning algorithms. Plant Physiology, 2021, 187(3): 1551–1576.
    [110] Xia FL, Quan LZ, Lou ZX, Sun D, Li HL, Lv XL. Identification and comprehensive evaluation of resistant weeds using unmanned aerial vehicle-based multispectral imagery. Frontiers in Plant Science, 2022, 13: 938604.
    [111] Ma JC, Liu BH, Ji L, Zhu ZC, Wu YF, Jiao WH. Field-scale yield prediction of winter wheat under different irrigation regimes based on dynamic fusion of multimodal UAV imagery. Int’l Journal of Applied Earth Observation and Geoinformation, 2023, 118: 103292.
    [112] Xu R, Li CY, Bernardes S. Development and testing of a UAV-based multi-sensor system for plant phenotyping and precision agriculture. Remote Sensing, 2021, 13(17): 3517.
    [113] López A, Jurado JM, Ogayar CJ, Feito FR. A framework for registering UAV-based imagery for crop-tracking in precision agriculture. Int’l Journal of Applied Earth Observation and Geoinformation, 2021, 97: 102274.
    [114] Ni M, Wang HJ, Liu XD, Liao YL, Fu L, Wu QQ, Mu J, Chen XY, Li J. Design of variable spray system for plant protection UAV based on CFD simulation and regression analysis. Sensors, 2021, 21(2): 638.
    [115] Almeida DRAD, Broadbent EN, Ferreira MP, et al. Monitoring restored tropical forest diversity and structure through UAV-borne hyperspectral and LiDAR fusion. Remote Sensing of Environment, 2021, 264: 112582.
    [116] Campbell MJ, Dennison PE, Tune JW, Kannenberg SA, Kerr KL, Codding BF, Anderegg WRL. A multi-sensor, multi-scale approach to mapping tree mortality in woodland ecosystems. Remote Sensing of Environment, 2020, 245: 111853.
    [117] Tauro F, Maltese A, Giannini R, Harfouche A. Latent heat flux variability and response to drought stress of black poplar: A multi-platform multi-sensor remote and proximal sensing approach to relieve the data scarcity bottleneck. Remote Sensing of Environment, 2022, 268: 112771.
    [118] Moradi F, Javan FD, Samadzadegan F. Potential evaluation of visible-thermal UAV image fusion for individual tree detection based on convolutional neural network. Int’l Journal of Applied Earth Observation and Geoinformation, 2022, 113: 103011.
    [119] Zhong H, Zhang ZY, Liu HR, Wu JZ, Lin WS. Individual tree species identification for complex coniferous and broad-leaved mixed forests based on deep learning combined with UAV LiDAR data and RGB images. Forests, 2024, 15(2): 293.
    [120] Lary DJ, Schaefer D, Waczak J, Aker A, Barbosa A, Wijeratne LOH, Talebi S, Fernando B, Sadler J, Lary T, Lary MD. Autonomous learning of new environments with a robotic team employing hyper-spectral remote sensing, comprehensive in-situ sensing and machine learning. Sensors, 2021, 21(6): 2240.
    [121] Lewicka O, Specht M, Stateczny A, Specht C, Dardanelli G, Brčić D, Szostak B, Halicki A, Stateczny M, Widźgowski S. Integration data model of the bathymetric monitoring system for shallow waterbodies using UAV and USV platforms. Remote Sensing, 2022, 14(16): 4075.
    [122] Alevizos E, Oikonomou D, Argyriou AV, Alexakis DD. Fusion of drone-based RGB and multi-spectral imagery for shallow water bathymetry inversion. Remote Sensing, 2022, 14(5): 1127.
    [123] Feng YR, Tse K, Chen SY, Wen CY, Li BY. Learning-based autonomous UAV system for electrical and mechanical (E&M) device inspection. Sensors, 2021, 21(4): 1385.
    [124] Vitiello F, Causa F, Opromolla R, Fasano G. Radar/visual fusion with fuse-before-track strategy for low altitude non-cooperative sense and avoid. Aerospace Science and Technology, 2024, 146: 108946.
    [125] Marques T, Carreira S, Miragaia R, Ramos J, Pereira A. Applying deep learning to real-time UAV-based forest monitoring: Leveraging multi-sensor imagery for improved results. Expert Systems with Applications, 2024, 245: 123107.
    [126] Nagarani N, Venkatakrishnan P, Balaji N. Unmanned aerial vehicle’s runway landing system with efficient target detection by using morphological fusion for military surveillance system. Computer Communications, 2020, 151: 463–472.
    [127] Golcarenarenji G, Martinez-Alpiste I, Wang Q, Alcaraz-Calero JM. Illumination-aware image fusion for around-the-clock human detection in adverse environments from unmanned aerial vehicle. Expert Systems with Applications, 2022, 204: 117413.
    [128] Liu F, Shan JY, Xiong BY, Fang Z. A real-time and multi-sensor-based landing area recognition system for UAVs. Drones, 2022, 6(5): 118.
    [129] Ahmed S, Qiu BJ, Kong CW, Xin H, Ahmad F, Lin JL. A data-driven dynamic obstacle avoidance method for liquid-carrying plant protection UAVs. Agronomy, 2022, 12(4): 873.
    [130] Green A, Kleine K, Acevedo I, Kraus D, Farrar CR, Mascarenas DDL. A multi-modal, silicon retina technique for detecting the presence of reflective and transparent barriers. IEEE Sensors Journal, 2021, 21(10): 11401–11416.
    [131] Hamadi H, Lussier B, Fantoni I, Francis C. Data fusion fault tolerant strategy for a quadrotor UAV under sensors and software faults. ISA Trans., 2022, 129: 520–539.
    [132] Chang YX, Cheng YQ, Manzoor U, Murray J. A review of UAV autonomous navigation in GPS-denied environments. Robotics and Autonomous Systems, 2023, 170: 104533.
    [133] Maddikunta PKR, Hakak S, Alazab M, Bhattacharya S, Gadekallu TR, Khan WZ, Pham QV. Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges. IEEE Sensors Journal, 2021, 21(16): 17608–17619.
    [134] Alhafnawi M, Bany Salameh HA, Masadeh A, Al-Obiedollah H, Ayyash M, El-Khazali R, Elgala H. A survey of indoor and outdoor UAV-based target tracking systems: Current status, challenges, technologies, and future directions. IEEE Access, 2023, 11: 68324–68339.
    [135] He YX, Guo HW, Li XD, Lu ZH, Li XY. A collaborative relay tracking method based on information fusion for UAVs. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59(5): 6894–6906.
    [136] Morales JJ, Khalife JJ, Kassas ZM. Information fusion strategies for collaborative inertial radio SLAM. IEEE Trans. on Intelligent Transportation Systems, 2022, 23(8): 12935–12952.
    [137] Saini N, Bonetto E, Price E, Ahmad A, Black MJ. AirPose: Multi-view fusion network for aerial 3D human pose and shape estimation. IEEE Robotics and Automation Letters, 2022, 7(2): 4805–4812.
    [138] 史殿习, 杨卓越, 金松昌, 张拥军, 苏向东, 李睿豪. 面向数据共享的多无人机协同SLAM方法. 计算机学报, 2021, 44(5): 983–998.
    Shi DX, Yang ZY, Jin SC, Zhang YJ, Su XD, Li RH. A multi-UAV collaborative SLAM method oriented to data sharing. Chinese Journal of Computers, 2021, 44(5): 983–998 (in Chinese with English abstract).
    [139] Tong PF, Yang XR, Yang YJ, Liu W, Wu PY. Multi-UAV collaborative absolute vision positioning and navigation: A survey and discussion. Drones, 2023, 7(4): 261.
    [140] Barrile V, Simonetti S, Citroni R, Fotia A, Bilotta G. Experimenting agriculture 4.0 with sensors: A data fusion approach between remote sensing, UAVs and self-driving tractors. Sensors, 2022, 22(20): 7910.
    [141] Qi GH, Chang CY, Yang W, Gao P, Zhao GX. Soil salinity inversion in coastal corn planting areas by the satellite-UAV-ground integration approach. Remote Sensing, 2021, 13(16): 3100.
    [142] Zhang H, Li QM, Wang JC, Fu BT, Duan ZJ, Zhao ZY. Application of space-sky-earth integration technology with UAVs in risk identification of tailings ponds. Drones, 2023, 7(4): 222.
    [143] Xing HM, Liu Y, Guo SX, Shi LW, Hou XH, Liu WZ, Zhao Y. A multi-sensor fusion self-localization system of a miniature underwater robot in structured and GPS-denied environments. IEEE Sensors Journal, 2021, 21(23): 27136–27146.
    [144] Liu C, Zhao J, Sun NY. A review of collaborative air-ground robots research. Journal of Intelligent & Robotic Systems, 2022, 106(3): 60.
    [145] Shit RC. Precise localization for achieving next-generation autonomous navigation: State-of-the-art, taxonomy and future prospects. Computer Communications, 2020, 160: 351–374.
    [146] Al-Sulaifanie AI, Al-Sulaifanie BK, Biswas S. Recent trends in clustering algorithms for wireless sensor networks: A comprehensive review. Computer Communications, 2022, 191: 395–424.
    [147] Kang M, Jeon SW. Energy-efficient data aggregation and collection for multi-UAV-enabled IoT networks. IEEE Wireless Communications Letters, 2024, 13(4): 1004–1008.
    [148] Khalifa O, Kouzayha N, Hussaini MA, ElSawy H, Al-Harthi N, Elmirghani J, Hanif M, Al-Naffouri TY. Energy conservative data aggregation for IoT devices: An aerial wake-up radio approach. IEEE Internet of Things Journal, 2024, 11(2): 2006–2026.
    [149] Salam A, Javaid Q, Ahmad M, Wahid I, Arafat MY. Cluster-based data aggregation in flying sensor networks enabled Internet of Things. Future Internet, 2023, 15(8): 279.
    [150] 李庚松, 刘艺, 秦伟, 李红梅, 郑奇斌, 宋明武, 任小广. 面向算法选择的元学习研究综述. 计算机科学与探索, 2023, 17(1): 88–107.
    Li GS, Liu Y, Qin W, Li HM, Zheng QB, Song MW, Ren XG. Survey on meta-learning research of algorithm selection. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 88–107 (in Chinese with English abstract).
    [151] 刘艺, 杨国利, 郑奇斌, 李翔, 周杨森, 陈德鹏. 无人系统数据融合流水线架构设计. 计算机应用, 2024, 44(8): 2536–2543.
    Liu Y, Yang GL, Zheng QB, Li X, Zhou YS, Chen DP. Architecture design of data fusion pipeline for unmanned systems. Journal of Computer Applications, 2024, 44(8): 2536–2543 (in Chinese with English abstract).
    [152] Chai XZ, Zheng ZS, Xiao JM, Yan L, Qu BY, Wen PW, Wang HY, Zhou Y, Sun H. Multi-strategy fusion differential evolution algorithm for UAV path planning in complex environment. Aerospace Science and Technology, 2022, 121: 107287.
    [153] Wang JF, Jia GW, Lin JC, Hou ZX. Cooperative task allocation for heterogeneous multi-UAV using multi-objective optimization algorithm. Journal of Central South University, 2020, 27(2): 432–448.
    [154] 闫涛, 韩崇昭, 张光华. 空中目标传感器管理方法综述. 航空学报, 2018, 39(10): 022209.
    Yan T, Han CZ, Zhang GH. An overview of sensor management approaches for aerial target. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 022209 (in Chinese with English abstract).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李庚松,刘艺,郑奇斌,杨国利,刘坤,王强,刁兴春.无人机多传感器数据融合研究综述.软件学报,2025,36(4):1881-1905

复制
分享
文章指标
  • 点击次数:572
  • 下载次数: 572
  • HTML阅读次数: 6
  • 引用次数: 0
历史
  • 收稿日期:2024-02-29
  • 最后修改日期:2024-04-11
  • 在线发布日期: 2024-12-25
文章二维码
您是第19780495位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号