云边联邦学习系统下抗投毒攻击的防御方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP309

基金项目:

北京市自然科学基金(M21039)


Defense Method Against Poisoning Attacks in Cloud-edge Federated Learning Systems
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着海量数据的涌现和智能应用需求的日益增长, 保障数据安全成为提高数据质量、实现数据价值的重要举措. 其中, 云边端架构是高效处理和优化数据的新兴技术, 联邦学习(FL)作为一个高效的去中心化的机器学习范式, 能够为数据提供隐私保护, 近年来引起了学术界及工业界的广泛关注. 然而, 联邦学习展示出了固有的脆弱性使其易于遭受投毒攻击. 现有绝大多数抵抗投毒攻击的防御方法依赖于连续更新空间, 但在实际场景中面向灵活的攻击方式和攻击场景可能是欠鲁棒的. 鉴于此, 提出一种面向云边联邦学习系统(CEFL)抵抗投毒攻击的防御方法FedDiscrete. 其关键思想是在客户端利用网络模型边的分数计算本地排名, 实现离散更新空间的创建. 进一步地, 为了兼顾参与FL任务的客户端之间的公平性, 引入贡献度指标, 这样, FedDiscrete能够通过分配更新后的全局排名对可能的攻击者实施惩罚. 广泛的实验结果表明所提方法在抵抗投毒攻击方面表现出显著的优势和鲁棒性, 且适用于独立同分布(IID)和非独立同分布(non-IID)场景, 能够为CEFL系统提供保护.

    Abstract:

    With the proliferation of massive data and the ever-growing demand for intelligent applications, ensuring data security has become a critical measure for enhancing data quality and realizing data value. The cloud-edge-client architecture has emerged as a promising technology for efficient data processing and optimization. Federated learning (FL), an efficient decentralized machine learning paradigm that can provide privacy protection for data, has garnered extensive attention from academia and industry in recent years. However, FL has demonstrated inherent vulnerabilities that render it highly susceptible to poisoning attacks. Most existing methods for defending against poisoning attacks rely on continuously updated space, but in practical scenarios, those methods may be less robust when facing flexible attack strategies and varied attack scenarios. Therefore, this study proposes FedDiscrete, a defense method for resisting poisoning attacks in cloud-edge FL (CEFL) systems. The key idea is to compute local rankings on the client side using the scores of network model edges to create discrete update space. To ensure fairness among clients participating in the FL task, this study also introduces a contribution metric. In this way, FedDiscrete can penalize potential attackers by allocating updated global rankings. Extensive experiments demonstrate that the proposed method exhibits significant advantages and robustness against poisoning attacks, and is applicable to both independent and identically distributed (IID) and non-IID scenarios, providing protection for CEFL systems.

    参考文献
    相似文献
    引证文献
引用本文

赵亚茹,张建标,曹益皓,黄浩翔.云边联邦学习系统下抗投毒攻击的防御方法.软件学报,,():1-21

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-09
  • 最后修改日期:2024-05-25
  • 录用日期:
  • 在线发布日期: 2024-12-11
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号