基于层重组扩展卡尔曼滤波的神经网络力场训练
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

中国科学院战略性先导科技专项(XDB0500102); 国家自然科学基金(T2125013, 92270206, 62372435, 62032023, 61972377, 61972380, T2293700, T2293702); 中科院稳定支持青年科学家团队(YSBR-005)


Neural Network Force Field Training Based on Reorganized Layer-wised Extended Kalman Filter
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    分子动力学模拟在材料模拟、生物制药等领域发挥着重要作用. 近年来, 科学智能(AI-for-Science)发展, 尤其是神经网络力场在预测能量、力等性质的问题上, 相比于传统势函数方法在准确性上有大幅提升. 针对当前的神经网络力场模型在使用一阶训练方法时出现的超参设置敏感和梯度爆炸问题, 给出层重组卡尔曼滤波优化器在避免超参数设置问题上的若干策略和防止梯度爆炸的理论证明. 基于层重组卡尔曼滤波优化器, 制定交替训练方法并分析该方法的精度收益和时间成本、提出分块阈值的性能模型并论述该模型的有效性、证明防止梯度爆炸的性质并验证该优化器关于激活函数和权重初始化的鲁棒性. 对4种典型的神经网络力场模型在11个有代表性的数据集进行测试, 实验表明, 当层重组卡尔曼滤波优化器和一阶优化器达到相当的预测精度时, 层重组卡尔曼滤波优化器相比于一阶方法快8–10倍. 可以相信, 所提出的层重组卡尔曼滤波训练方法能给其他的科学智能(AI-for-Science)应用带来启发.

    Abstract:

    Molecular dynamics simulation plays an important role in material simulation, biopharmaceuticals, and other areas. In recent years, the development of AI-for-Science has greatly improved the accuracy of neural network force fields in predicting energy, force, and other properties, compared to traditional methods using potential functions. Neural network force field models may challenges such as hyperparameter settings and gradient explosion when trained by the first-order method. Based on an optimizer named reorganized layer extended Kalman filtering, this study provides several strategies to avoid hyperparameters and offers theoretical evidence for preventing gradient explosion. This study also proposes an alternate training method and analyzes its accuracy gains and time costs. A performance model of block thresholding is proposed, and its effectiveness is explored. Additionally, the property of preventing gradient explosion is proven, and the optimizer’s robustness with respect to activation functions and weight initialization is validated. Four typical neural network force field models are tested on 11 representative datasets. Results show that when the proposed optimizer and the first-order optimizer achieve comparable prediction accuracy, the proposed optimizer is 8 to 10 times faster than the first-order optimizer. It is believed that the proposed training method can inspire other AI-for-Science applications.

    参考文献
    相似文献
    引证文献
引用本文

胡思宇,周远昌,赵曈,汪林望,贾伟乐,谭光明.基于层重组扩展卡尔曼滤波的神经网络力场训练.软件学报,,():1-17

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-21
  • 最后修改日期:2024-04-30
  • 录用日期:
  • 在线发布日期: 2025-01-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号