广域确定性网络传输技术综述
作者:
基金项目:

国家自然科学基金(62202473, 62072458); 腾讯基础平台技术犀牛鸟专项研究计划


Survey on Transmission Technology in Wide Area Deterministic Networking
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [133]
  • |
  • 相似文献 [14]
  • | | |
  • 文章评论
    摘要:

    广域网作为连接新业务、新基础设施和各类新型应用的纽带, 已成为21世纪最重要的基础设施之一. 近年来, 数据量爆炸性增长, 伴随着基于广域网的大模型、数字经济、元宇宙和全息社会等新型应用形态的持续涌现, 以及东数西算、算力网络和数据场等新型业务架构的出现, 业务对广域网的数据传输服务质量提出了越来越高的要求. 以时延为例, 广域网不仅需要提供及时的服务, 还需要提供准时的服务, 即时延成为必须满足的确定性指标. 因此, 广域确定性网络作为广域网的新范式应运而生. 系统地综述确定性网络的内涵, 回顾传统确定性网络相关技术发展脉络, 介绍广域确定性网络的新应用, 探讨广域网确定性网络传输具有的新特征以及面临的新挑战, 并提出广域确定性网络的新目标. 基于上述新应用、新特征、新挑战和新目标, 详细总结当前广域确定性网络领域的主要研究进展, 并给出未来研究的方向. 期望能为广域确定性网络领域的研究提供参考和帮助.

    Abstract:

    Wide area network (WAN) has become critical infrastructure in the 21st century, connecting new businesses, new infrastructure, and various emerging applications. In recent years, there has been an explosive growth in data volume, accompanied by the continuous emergence of new application forms such as large-scale WAN-based models, digital economy, metaverse, and holographic society. In addition, the emergence of new service architectures, such as China’s “East Data, West Computing” project, computing power networks, and data fields, has posed increasingly high requirements for the data transmission quality of WAN. For instance, WAN must deliver not only timely but also real-time services, making latency a critical deterministic metric to meet. Therefore, wide area deterministic network emerges as a new paradigm of WAN. This study systematically reviews the connotation of deterministic networks and the development of traditional technologies related to deterministic networks. It introduces new applications of wide area deterministic network, discusses their new characteristics and transmission challenges, and proposes new goals for them. Based on the aforementioned new applications, characteristics, challenges, and goals, this study summarizes the main research progress in the field of wide area deterministic network in detail and provides future research directions. It is hoped that this study will provide reference and assistance for research in this field.

    参考文献
    [1] 国家发展改革委, 中央网信办, 工业和信息化部, 国家能源局. 关于印发《全国一体化大数据中心协同创新体系算力枢纽实施方案》的通知. 发改高技[2021]709号. 2021. https://www.gov.cn/zhengce/zhengceku/2021-05/26/content_5612405.htm
    National Development and Reform Commission, Cyberspace Administration of China, Ministry of Industry and Information Technology of the People’s Republic of China, National Energy Administration. Notice about printing and distributing the implementation plan for computing power hub of national integrated big-data center collaborative innovation system. 2021 (in Chinese). https://www.gov.cn/zhengce/zhengceku/2021-05/26/content_5612405.htm
    [2] 吴曼青. 数据空间引领数字技术体系创新. 2023. https://ysg.ckcest.cn/ysgNews/1746805.html
    Wu MQ. Data space leading digital technology system innovation. 2023 (in Chinese). https://ysg.ckcest.cn/ysgNews/1746805.html
    [3] Dürr F, Nayak NG. No-wait packet scheduling for IEEE time-sensitive networks (TSN). In: Proc. of the 24th Int’l Conf. on Real-time Networks and Systems. Brest: ACM, 2016. 203–212. [doi: 10.1145/2997465.2997494]
    [4] Kehrer S, Kleineberg O, Heffernan D. A comparison of fault-tolerance concepts for IEEE 802.1 time sensitive networks (TSN). In: Proc. of the 2014 IEEE Emerging Technology and Factory Automation (ETFA). Barcelona: IEEE, 2014. 1–8.
    [5] Nasrallah A, Thyagaturu AS, Alharbi Z, Wang CX, Shao X, Reisslein M, ElBakoury H. Ultra-low latency (ULL) networks: The IEEE TSN and IETF DetNet standards and related 5G ULL research. IEEE Communications Surveys & Tutorials, 2019, 21(1): 88–145.
    [6] Yang XT, Scholz D, Helm M. Deterministic networking (DetNet) vs time sensitive networking (TSN). In: Proc. of the Seminar IITM SS 19. 2019. 79–84.
    [7] Grossman E. Deterministic networking use cases. RFC 8578, 2019. Internet Engineering Task Force (IETF).
    [8] Schelten N, Steinert F, Schulte A, Stabernack B. A high-throughput, resource-efficient implementation of the RoCEv2 remote DMA protocol for network-attached hardware accelerators. In: Proc. of the 2020 Int’l Conf. on Field-programmable Technology (ICFPT). Maui: IEEE, 2020. 241–249. [doi: 10.1109/ICFPT51103.2020.00042]
    [9] IEEE. 802.1BA-2021 IEEE standard for local and metropolitan area networks—Audio video bridging (AVB) systems. IEEE, 2021.
    [10] 第五届未来网络发展大会组委会. 未来网络白皮书: 确定性网络技术体系. 2021. https://www-file.huawei.com/-/media/corporate/pdf/news/future-network-whitepaper.pdf?la=zh
    Organizing Committee of the 5th Future Network Development Conference. Future network whitepaper: White paper on deterministic network technology system. 2021 (in Chinese). https://www-file.huawei.com/-/media/corporate/pdf/news/future-network-whitepaper.pdf?la=zh
    [11] 柴云鹏, 李彤, 范举, 卢卫, 张峰, 杜小勇. 跨域数据管理的内涵与挑战. 中国计算机学会通讯, 2022, 18(11): 29–33.
    Chai YP, Li T, Fan J, Lu W, Zhang F, Du XY. Connotation and challenges of cross-domain data management. Communications of the CCF, 2022, 18(11): 29–33 (in Chinese).
    [12] Lloyd J. Infrastructure Leader’s Guide to Google Cloud. Berkeley: Apress, 2023. 13–47. [doi: 10.1007/978-1-4842-8820-7]
    [13] Larsson L, Gustafsson H, Klein C, Elmroth E. Decentralized kubernetes federation control plane. In: Proc. of the 13th IEEE/ACM Int’l Conf. on Utility and Cloud Computing. Leicester: IEEE, 2020. 354–359.
    [14] Cheng YJ, Yang D, Zhou HC. Det-WiFi: A multihop TDMA MAC implementation for industrial deterministic applications based on commodity 802.11 hardware. Wireless Communications and Mobile Computing, 2017, 2017: 4943691.
    [15] Koulougli D, Nguyen KK, Cheriet M. Flexible ethernet traffic restoration in multi-layer multi-domain networks. In: Proc. of the 2021 IEEE Int’l Conf. on Communications. Montreal: IEEE, 2021. 1–6. [doi: 10.1109/ICC42927.2021.9500270]
    [16] Prados-Garzon J, Taleb T, Bagaa M. Optimization of flow allocation in asynchronous deterministic 5G transport networks by leveraging data analytics. IEEE Trans. on Mobile Computing, 2023, 22(3): 1672–1687.
    [17] IEEE. Std 1588-2019 IEEE standard for a precision clock synchronization protocol for networked measurement and control systems. IEEE, 2020.
    [18] Ferrant JL, Gilson M, Jobert S, Mayer M, Ouellette M, Montini L, Rodrigues S, Ruffini S. Synchronous Ethernet: A method to transport synchronization. IEEE Communications Magazine, 2008, 46(9): 126–134.
    [19] 杜小勇, 李彤, 卢卫, 范举, 张峰, 柴云鹏. 跨域数据管理. 计算机科学, 2024, 51(1): 4–12.
    Du XY, Li T, Lu W, Fan J, Zhang F, Chai YP. Cross-domain data management. Computer Science, 2024, 51(1): 4–12 (in Chinese with English abstract).
    [20] 华为云. 2007. https://www.huaweicloud.com/global/
    Huaweicloud. 2007 (in Chinese). https://www.huaweicloud.com/global/
    [21] 阿里云. 2019. https://infrastructure.aliyun.com/
    Aliyun. 2019 (in Chinese). https://infrastructure.aliyun.com/
    [22] 杨玲玲. “东数西算”工程启动, 阿里、华为、腾讯互联网巨头布局了多少数据中心. 2022. https://www.36kr.com/p/1626058232985348
    Yang LL. When the strategy is in full swing to channel more computing resources from the eastern areas to the less developed western regions, how many data centers do Alibaba, Huawei and Tencent build? 2022 (in Chinese). https://www.36kr.com/p/1626058232985348
    [23] 庄琪钰, 李彤, 卢卫, 杜小勇. Harp: 面向跨空间域的分布式事务优化算法. 大数据, 2023, 9(4): 16–31.
    Zhuang QY, Li T, Lu W, Du XY. Harp: Optimization algorithm for cross-domain distributed transactions. Big Data Research, 2023, 9(4): 16–31 (in Chinese with English abstract).
    [24] 中国信息通信研究院. 云游戏产业发展白皮书. 2019. http://www.caict.ac.cn/kxyj/qwfb/bps/201912/t20191230_272898.htm
    China Academy of Information and Communications Technology. White paper on the development of cloud game industry. 2019 (in Chinese). http://www.caict.ac.cn/kxyj/qwfb/bps/201912/t20191230_272898.htm
    [25] 黄韬, 汪硕, 黄玉栋, 郑尧, 刘江, 刘韵洁. 确定性网络研究综述. 通信学报, 2019, 40(6): 160–176.
    Huang T, Wang S, Huang YD, Zheng Y, Liu J, Liu YJ. Survey of the deterministic network. Journal on Communications, 2019, 40(6): 160–176 (in Chinese with English abstract).
    [26] Karaagac A, Haxhibeqiri J, Moerman I, Hoebeke J. Time-critical communication in 6TiSCH networks. In: Proc. of the 2018 IEEE Wireless Communications and Networking Conf. Workshops. Barcelona: IEEE, 2018. 161–166. [doi: 10.1109/WCNCW.2018.8368987]
    [27] 5G确定性网络产业联盟. 5G确定性网络+工业互联网融合白皮书. 2020. https://www.huawei.com/cn/news/2020/11/5gdn-based-industrial-internet-whitepaper
    5G Deterministic Networking Alliance. White paper on 5G deterministic networking+industrial Internet integration. 2020 (in Chinese). https://www.huawei.com/cn/news/2020/11/5gdn-based-industrial-internet-whitepaper
    [28] 李伟明, 李彤, 张大方, 戴隆超, 柴云鹏. 跨空间域数据管理分布式共识算法: 现状、挑战和展望. 大数据, 2023, 9(4): 3–15.
    Li WM, Li T, Zhang DF, Dai LC, Chai YP. Distributed consensus algorithms for cross-domain data management: State-of-the-art, challenges and perspectives. Big Data Research, 2023, 9(4): 3–15 (in Chinese with English abstract).
    [29] 左旭彤, 王莫为, 崔勇. 低时延网络: 架构, 关键场景与研究展望. 通信学报, 2019, 40(8): 22–35.
    Zuo XT, Wang MW, Cui Y. Low-latency networking: Architecture, key scenarios and research prospect. Journal on Communications, 2019, 40(8): 22–35 (in Chinese with English abstract).
    [30] ZTE中兴. IP网络未来演进技术白皮书2.0—开放服务互联网络. 2022. https://www.zte.com.cn/content/dam/zte-site/res-www-zte-com-cn/mediares/zte/files/pdf/bn/New_IPFutureTechnologyWhitePaper.pdf
    Zhongxing Telecom Equipment. IP network future evolution technology white paper 2.0—Open service Internet. 2022 (in Chinese). https://www.zte.com.cn/content/dam/zte-site/res-www-zte-com-cn/mediares/zte/files/pdf/bn/New_IPFutureTechnologyWhitePaper.pdf
    [31] Rekhter Y, Gross P. Application of the border gateway protocol in the Internet. RFC 1772, 1995. [doi: 10.17487/RFC1772]
    [32] Bhatia R, Hao F, Kodialam M, Lakshman TV. Optimized network traffic engineering using segment routing. In: Proc. of the 2015 IEEE Conf. on Computer Communications. Hong Kong: IEEE, 2015. 657–665. [doi: 10.1109/INFOCOM.2015.7218434]
    [33] Ginsberg L, Decraene B, Litkowski S, Shakir R, Filsfils C, Previdi S. Segment routing architecture. RFC 8402, Internet Engineering Task Force (IETF), 2018.
    [34] Guedrez R, Dugeon O, Lahoud S, Texier G. Label encoding algorithm for MPLS segment routing. In: Proc. of the 15th IEEE Int’l Symp. on Network Computing and Applications. Cambridge: IEEE, 2016. 113–117. [doi: 10.1109/NCA.2016.7778603]
    [35] Tian Y, Wang ZL, Yin X, Shi XG, Guo YY, Geng HJ, Yang JH. Traffic engineering in partially deployed segment routing over IPv6 network with deep reinforcement learning. IEEE/ACM Trans. on Networking, 2020, 28(4): 1573–1586.
    [36] Xiao XP, Hannan A, Bailey B, Ni LM. Traffic engineering with MPLS in the Internet. IEEE Network, 2000, 14(2): 28–33.
    [37] Danna E, Mandal S, Singh A. A practical algorithm for balancing the max-min fairness and throughput objectives in traffic engineering. In: Proc. of the 2012 IEEE INFOCOM. Orlando: IEEE, 2012. 846–854. [doi: 10.1109/INFCOM.2012.6195833]
    [38] Aggarwal R, Rekhter Y. Resource reservation protocol with traffic engineering point to multi-point label switched path hierarchy: US, 7787380. 2010-08-31.
    [39] Yang ZJ, Cui Y, Li BC, Liu YD, Xu Y. Software-defined wide area network (SD-WAN): Architecture, advances and opportunities. In: Proc. of the 28th Int’l Conf. on Computer Communication and Networks. Valencia: IEEE, 2019. 1–9.
    [40] Iyengar J, Thomson M. QUIC: A UDP-based multiplexed and secure transport. RFC 9000, Internet Engineering Task Force (IETF) , 2021.
    [41] Mogul JC. The case for persistent-connection HTTP. ACM SIGCOMM Computer Communication Review, 1995, 25(4): 299–313. [doi: 10.1145/217391.217465]
    [42] Stewart R, Metz C. SCTP: New transport protocol for TCP/IP. IEEE Internet Computing, 2001, 5(6): 64–69.
    [43] Wischik D, Handley M, Braun MB. The resource pooling principle. ACM SIGCOMM Computer Communication Review, 2008, 38(5): 47–52.
    [44] 廖彬彬, 张广兴, 刁祖龙, 谢高岗. 基于深度强化学习的MPTCP动态编码调度系统. 高技术通讯, 2022, 32(7): 727–736.
    Liao BB, Zhang GX, Diao ZL, Xie GG. A dynamic coding and scheduling system of MPTCP based on deep reinforcement learning. Chinese High Technology Letters, 2022, 32(7): 727–736 (in Chinese with English abstract).
    [45] Ford A, Raiciu C, Handley M, Bonaventure O. TCP extensions for multipath operation with multiple addresses. RFC 6824, Internet Engineering Task Force (IETF), 2013.
    [46] Mathis M, Mahdavi J. Forward acknowledgement: Refining TCP congestion control. ACM SIGCOMM Computer Communication Review, 1996, 26(4): 281–291.
    [47] Cheng Y, Cardwell N, Dukkipati N, Jha P. The RACK-TLP loss detection algorithm for TCP. RFC 8985, Internet Engineering Task Force (IETF), 2021.
    [48] Li T, Zheng K, Xu K, Jadhav RA, Xiong T, Winstein K, Tan K. Revisiting acknowledgment mechanism for transport control: Modeling, analysis, and implementation. IEEE/ACM Trans. on Networking, 2021, 29(6): 2678–2692.
    [49] Li T, Liu W, Ma XY, Zhu SP, Cao JK, Liu SZ, Zhang TT, Zhu YF, Wu B, Xu K. ART: Adaptive retransmission for wide area loss recovery in the wild. In: Proc. of the 31st Int’l Conf. on Network Protocols. Reykjavik: IEEE, 2023. 1–11.
    [50] Yan X, Li T, Wu B, Luo C, Wang FY, Wang HY, Xu K. Poster: TOO: Accelerating loss recovery by taming on-off traffic patterns. In: Proc. of the 2023 ACM SIGCOMM Conf. New York: ACM, 2023. 1147–1149. [doi: 10.1145/3603269.3610841]
    [51] Li GY, Liu SW, Li H, Lei WM, Zhang W. An adaptive retransmission-based multipath transmission mechanism for conversational video. Int’l Journal of Communication Systems, 2018, 31(15): e3778.
    [52] Zheng ZL, Ma YF, Liu YM, Yang FR, Li ZY, Zhang YB, Zhang JH, Shi W, Chen WT, Li D, An Q, Hong H, Liu HH, Zhang M. XLINK: QoE-driven multi-path quic transport in large-scale video services. In: Proc. of the 2021 ACM SIGCOMM Conf. ACM, 2021. 418–432.
    [53] Perkins C, Hodson O. Options for repair of streaming media. RFC 2354, Internet Engineering Task Force (IETF), 1998.
    [54] Rudow M, Yan FY, Kumar A, Ananthanarayanan G, Ellis M, Rashmi KV. Tambur: Efficient loss recovery for videoconferencing via streaming codes. In: Proc. of the 20th USENIX Symp. on Networked Systems Design and Implementation. Boston: USENIX Association, 2023. 953–971.
    [55] Li A. RTP payload format for generic forward error correction. RFC 5109, Internet Engineering Task Force (IETF), 2007.
    [56] Michel F, Cohen A, Malak D, De Coninck Q, Médard M, Bonaventure O. FlEC: Enhancing QUIC with application-tailored reliability mechanisms. IEEE/ACM Trans. on Networking, 2023, 31(2): 606–619.
    [57] Watson M, Luby M, Vicisano L. Forward error correction (FEC) building block. RFC 5052, Internet Engineering Task Force (IETF), 2007.
    [58] Winstein K, Sivaraman A, Balakrishnan H. Stochastic forecasts achieve high throughput and low delay over cellular networks. In: Proc. of the 10th USENIX Conf. on Networked Systems Design and Implementation. Lombard: USENIX Association, 2013. 459–471.
    [59] Zaki Y, Pötsch T, Chen J, Subramanian L, Görg C. Adaptive congestion control for unpredictable cellular networks. In: Proc. of the 2015 ACM Conf. on Special Interest Group on Data. London: ACM, 2015. 509–522. [doi: 10.1145/2785956.2787498]
    [60] Xie YX, Yi F, Jamieson K. PBE-CC: Congestion control via endpoint-centric, physical-layer bandwidth measurements. In: Proc. of the 2020 Annual Conf. of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication. ACM, 2020. 451–464.
    [61] Salameh L, Zhushi A, Handley M, Jamieson K, Karp B. HACK: Hierarchical ACKs for efficient wireless medium utilization. In: Proc. of the 2014 USENIX Conf. on USENIX Annual Technical Conf. Philadelphia: USENIX Association, 2014. 359–370.
    [62] Li T, Zheng K, Xu K, Jadhav RA, Xiong T, Winstein K, Tan K. TACK: Improving wireless transport performance by taming acknowledgments. In: Proc. of the 2020 Annual Conf. of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication. ACM, 2020. 15–30.
    [63] Tan K, Song J, Zhang Q, Sridharan M. A compound TCP approach for high-speed and long distance networks. In: Proc. of the 25th IEEE Int’l Conf. on Computer Communications. Barcelona: IEEE, 2006. 1–12. [doi: 10.1109/INFOCOM.2006.188]
    [64] Ha S, Rhee I, Xu LS. CUBIC: A new TCP-friendly high-speed TCP variant. ACM SIGOPS Operating Systems Review, 2008, 42(5): 64–74.
    [65] Cardwell N, Cheng YC, Gunn CS, Yeganeh SH, Jacobson V. BBR: Congestion-based congestion control: Measuring bottleneck bandwidth and round-trip propagation time. Queue, 2016, 14(5): 20–53.
    [66] Winstein K, Balakrishnan H. TCP ex machina: Computer-generated congestion control. ACM SIGCOMM Computer Communication Review, 2013, 43(4): 123–134.
    [67] Jay N, Rotman NH, Godfrey B, Schapira M, Tamar A. A deep reinforcement learning perspective on Internet congestion control. In: Proc. of the 36th Int’l Conf. on Machine Learning. Long Beach: PMLR, 2019. 3050–3059.
    [68] Xia ZC, Xue S, Wu J, Chen YJ, Chen JJ, Wu LB. Deep reinforcement learning for smart city communication networks. IEEE Trans. on Industrial Informatics, 2021, 17(6): 4188–4196.
    [69] Xia ZC, Wu LB, Wang F, Liao XD, Hu HY, Wu J, Wu D. Glider: Rethinking congestion control with deep reinforcement learning. World Wide Web, 2023, 26(1): 115–137.
    [70] Zhong ZR, Wang W, Shao YY, Li ZY, Pan H, Guan HT, Tyson G, Xie GG, Zheng K. Muses: Enabling lightweight learning-based congestion control for mobile devices. In: Proc. of the 2022 IEEE Conf. on Computer Communications. London: IEEE, 2022. 2208–2217. [doi: 10.1109/INFOCOM48880.2022.9796880]
    [71] Jiang HL, Li Q, Jiang Y, Shen GB, Sinnott R, Tian C, Xu MW. When machine learning meets congestion control: A survey and comparison. Computer Networks, 2021, 192: 108033.
    [72] Abbasloo S, Yen CY, Chao HJ. Classic meets modern: A pragmatic learning-based congestion control for the Internet. In: Proc. of the 2020 Annual Conf. of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication. ACM, 2020. 632–647.
    [73] Du ZX, Zheng JQ, Yu HB, Kong LT, Chen GH. A unified congestion control framework for diverse application preferences and network conditions. In: Proc. of the 17th Int’l Conf. on emerging Networking Experiments and Technologies. Munich: ACM, 2021. 282–296. [doi: 10.1145/3485983.3494840]
    [74] Pan ZY, Zhou JE, Qiu XY, Li WC, Pan H, Zhang W. Marten: A built-in security DRL-based congestion control framework by polishing the expert. In: Proc. of the 2023 IEEE Conf. on Computer Communications. New York City: IEEE, 2023. 1–10.
    [75] Abbasloo S, Yen CY, Chao HJ. Wanna make your TCP scheme great for cellular networks? Let machines do it for you! IEEE Journal on Selected Areas in Communications, 2021, 39(1): 265–279. [doi: 10.1109/JSAC.2020.3036958]
    [76] Zhou JE, Qiu XY, Li ZY, Tyson G, Li Q, Duan JP, Wang Y. Antelope: A framework for dynamic selection of congestion control algorithms. In: Proc. of the 29th IEEE Int’l Conf. on Network Protocols. Dallas: IEEE, 2021. 1–11.
    [77] Zeng GX, Bai W, Chen G, Chen K, Han DS, Zhu YB, Cui L. Congestion control for cross-datacenter networks. In: Proc. of the 27th IEEE Int’l Conf. on Network Protocols. Chicago: IEEE, 2019. 1–12. [doi: 10.1109/ICNP.2019.8888042]
    [78] Lu YW, Chen G, Li BJ, Tan K, Xiong YQ, Cheng P, Zhang JS, Chen EH, Moscibroda T. Multi-path transport for RDMA in datacenters. In: Proc. of the 15th USENIX Conf. on Networked Systems Design and Implementation. Renton: USENIX Association, 2018. 357–371.
    [79] Altman E, Jiménez T. Novel delayed ACK techniques for improving TCP performance in multihop wireless networks. In: Proc. of the 8th Int’l Conf. on Personal Wireless Communications. Venice: Springer, 2003. 237–250. [doi: 10.1007/978-3-540-39867-7_26]
    [80] Li T, Zheng K, Xu K. Acknowledgment on demand for transport control. IEEE Internet Computing, 2021, 25(2): 109–115.
    [81] 李彤, 郑凯, 徐恪. 传输控制中的确认机制研究. 软件学报, 2024, 35(4): 1993–2021. http://www.jos.org.cn/1000-9825/6939.htm
    Li T, Zheng K, Xu K. Acknowledgment mechanisms of transmission control. Ruan Jian Xue Bao/Journal of Software, 2024, 35(4): 1993–2021 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6939.htm
    [82] Ferlin S, Alay Ö, Mehani O, Boreli R. BLEST: Blocking estimation-based MPTCP scheduler for heterogeneous networks. In: Proc. of the 2016 IFIP Networking Conf. (IFIP Networking) and Workshops. Vienna: IEEE, 2016. 431–439.
    [83] Shi H, Cui Y, Wang X, Hu YM, Dai ML, Wang FZ, Zheng K. STMS: Improving MPTCP throughput under heterogeneous networks. In: Proc. of the 2018 USENIX Conf. on Usenix Annual Technical Conf. Boston: USENIX Association, 2018. 719–730.
    [84] Yang ZY, Shen J, Liu YF, Yang Y, Zhang WN, Yu Y. TADS: Learning time-aware scheduling policy with dyna-style planning for spaced repetition. In: Proc. of the 43rd Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM, 2020. 1917–1920.
    [85] Guo YE, Nikravesh A, Mao ZM, Qian F, Sen S. Accelerating multipath transport through balanced subflow completion. In: Proc. of the 23rd Annual Int’l Conf. on Mobile Computing and Networking. Snowbird: ACM, 2017. 141–153. [doi: 10.1145/3117811.3117829]
    [86] Zuo XT, Cui Y, Wang X, Yang JY. Deadline-aware multipath transmission for streaming blocks. In: Proc. of the 2020 IEEE Conf. on Computer Communications. London: IEEE, 2022. 2178–2187. [doi: 10.1109/INFOCOM48880.2022.9796942]
    [87] Sakic E, Vizarreta P, Kellerer W. SEER: Performance-aware leader election in single-leader consensus. arXiv:2104.01355, 2021.
    [88] Liu SY, Vukolić M. Leader set selection for low-latency geo-replicated state machine. IEEE Trans. on Parallel and Distributed Systems, 2017, 28(7): 1933–1946.
    [89] Park SJ, Ousterhout J. Exploiting commutativity for practical fast replication. In: Proc. of the 16th USENIX Conf. on Networked Systems Design and Implementation. Boston: USENIX Association, 2019. 47–64.
    [90] Moraru I, Andersen DG, Kaminsky M. There is more consensus in egalitarian parliaments. In: Proc. of the 24th ACM Symp. on Operating Systems Principles. Farminton: ACM, 2013. 358–372. [doi: 10.1145/2517349.2517350]
    [91] Nawab F, Agrawal D, El Abbadi A. DPaxos: Managing data closer to users for low-latency and mobile applications. In: Proc. of the 2018 Int’l Conf. on Management of Data. Houston: ACM, 2018. 1221–1236. [doi: 10.1145/3183713.3196928]
    [92] Zhang Q, Li JY, Zhao HY, Xu QQ, Lu W, Xiao JL, Han FS, Yang CH, Du XY. Efficient distributed transaction processing in heterogeneous networks. Proc. of the VLDB Endowment, 2023, 16(6): 1372–1385.
    [93] Yan XN, Yang LG, Zhang HB, Lin XC, Wong B, Salem K, Brecht T. Carousel: Low-latency transaction processing for globally-distributed data. In: Proc. of the 2018 Int’l Conf. on Management of Data. Houston: ACM, 2018. 231–243. [doi: 10.1145/3183713.3196912]
    [94] Mu S, Nelson L, Lloyd W, Li JY. Consolidating concurrency control and consensus for commits under conflicts. In: Proc. of the 12th USENIX Conf. on Operating Systems Design and Implementation. Savannah: USENIX Association, 2016. 517–532.
    [95] Ren K, Li D, Abadi DJ. SLOG: Serializable, low-latency, geo-replicated transactions. Proc. of the VLDB Endowment, 2019, 12(11): 1747–1761.
    [96] Bentaleb A, Taani B, Begen AC, Timmerer C, Zimmermann R. A survey on bitrate adaptation schemes for streaming media over HTTP. IEEE Communications Surveys & Tutorials, 2018, 21(1): 562–585
    [97] Apple. HTTP live streaming. 2015. https://developer.apple.com/streaming
    [98] Microsoft. Smooth streaming transport protocol. 2015. https://learn.microsoft.com/en-us/iis/media/smooth-streaming/smooth-streaming-transport-protocol
    [99] Adobe. Adobe HTTP dynamic streaming. 2017. https://business.adobe.com/cn/products/primetime/adobe-media-server/hds-dynamic-streaming.html
    [100] 侯方明. “黑灯工厂”的故事, 从确定性IP网络说起. 《华为技术》第90期. 2022. https://www.huawei.com/cn/huaweitech/publication/90/deterministric-ip-networking-dark-factory
    Hou FM. Story of dark factory: Starting from deterministic IP networking. Huawei Technologies, 90th issue. 2022 (in Chinese). https://www.huawei.com/cn/huaweitech/publication/90/deterministric-ip-networking-dark-factory
    [101] 郑晓亮, 邵蔚. (IPv6+系列电子书) 确定性IP网络. 2021. https://support.huawei.com/enterprise/zh/doc/EDOC1100209090
    Zheng XL, Shao W. Deterministic IP network. 2021 (in Chinese). https://support.huawei.com/enterprise/zh/doc/EDOC1100209090
    [102] 郑秀丽, 蒋胜, 王闯. NewIP: 开拓未来数据网络的新连接和新能力. 电信科学, 2019, 35(9): 2–11.
    Zheng XL, Jiang S, Wang C. NewIP: New connectivity and capabilities of upgrading future data network. Elecommunications Science, 2019, 35(9): 2–11 (in Chinese with English abstract).
    [103] 强鹂, 刘冰洋, 于德雷, 王闯. 大规模确定性网络转发技术. 电信科学, 2019, 35(9): 12–19.
    Qiang L, Liu BY, Yu DL, Wang C. Large-scale deterministic network forwarding technology. Telecommunications Science, 2019, 35(9): 12–19 (in Chinese with English abstract).
    [104] ZTE中兴. IP网络未来演进技术白皮书3.0—增强确定性网络(EDN). 2023. https://www.zte.com.cn/china/about/news/20230915c1.html
    Zhongxing Telecom Equipment. IP network future evolution technology white paper 3.0—Enhanced deterministic network (EDN). 2023 (in Chinese). https://www.zte.com.cn/china/about/news/20230915c1.html
    [105] UClouvain. Multipath QUIC. 2017. https://multipath-quic.org/
    [106] Li L, Xu K, Li T, Zheng K, Peng CY, Wang D, Wang XX, Shen M, Mijumbi R. A measurement study on multi-path TCP with multiple cellular carriers on high speed rails. In: Proc. of the 2018 Conf. of the ACM Special Interest Group on Data. Budapest: ACM, 2018. 161–175. [doi: 10.1145/3230543.3230556]
    [107] Mittal R, Lam VT, Dukkipati N, Blem E, Wassel H, Ghobadi M, Vahdat A, Wang YG, Wetherall D, Zats D. TIMELY: RTT-based congestion control for the datacenter. In: Proc. of the 2015 ACM Conf. on Special Interest Group on Data Communication. London: ACM, 2015. 537–550. [doi: 10.1145/2785956.2787510]
    [108] 赵俊峰, 李芳, 叶晓峰, 江淞. 面向广域RDMA的确定性网络需求与技术. 电信科学, 2023, 39(11): 39–51.
    Zhao JF, Li F, Ye XF, Jiang S. Research on deterministic networking requirements and technologies for RDMA-WAN. Telecommunications Science, 2023, 39(11): 39–51 (in Chinese with English abstract).
    [109] Kanaumi Y, Saito SI, Kawai E, Ishii S, Kobayashi K, Shimojo S. RISE: A wide area hybrid OpenFlow network testbed. IEICE Trans. on Communications, 2013, E96.B(1): 108–118.
    [110] Berman M, Chase JS, Landweber L, Nakao A, Ott M, Raychaudhuri D, Ricci R, Seskar I. GENI: A federated testbed for innovative network experiments. Computer Networks, 2014, 61: 5–23.
    引证文献
引用本文

李彤,徐都玲,吴波,郭雄文,蒋岱均,罗成,卢卫,杜小勇.广域确定性网络传输技术综述.软件学报,2025,36(1):371-398

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-09
  • 最后修改日期:2024-03-22
  • 在线发布日期: 2024-11-01
  • 出版日期: 2025-01-06
文章二维码
您是第19698569位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号