基于区块链和去中心化可问责属性认证的众包方案
作者:
中图分类号:

TP393

基金项目:

国家重点研发计划 (2019YFB2101703); 国家自然科学基金 (62272107, 62302129); 上海市科技创新行动计划 (21511102200); 广东省重点研发计划 (2020B0101090001); 海南省重点研发项目(ZDYF2024GXJS030)


Crowdsourcing Scheme Based on Blockchain and Decentralized Accountable Attribute-based Authentication
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    众包是一种分布式解决问题的方式, 可以降低成本并有效利用资源. 区块链技术的引入解决了传统众包平台集中化程度过高的问题, 但它的透明性却带来了隐私泄露的风险. 传统的匿名认证虽然可以隐藏用户身份, 但存在匿名滥用的问题, 同时还增加了对工作者筛选的难度. 提出一种去中心化可问责属性认证方案, 并将其与区块链结合设计一种新型众包方案. 该方案利用去中心化属性加密与非交互式零知识证明技术, 在保护用户身份隐私的同时实现可链接性和可追踪性, 并且请求者可以制定访问策略来筛选工作者. 此外, 该方案通过门限秘密分享技术实现了属性授权机构和追踪组, 提高系统的安全性. 通过实验仿真和分析证明该方案在时间和存储开销上符合实际应用需求.

    Abstract:

    As a distributed approach to problem solving, crowdsourcing reduces costs and efficiently utilizes resources. While blockchain technology is introduced to solve the problem of over-centralization in traditional crowdsourcing platforms, its transparency brings the risk of privacy leakage. The traditional anonymous authentication can hide the user’s identity, but the anonymity is abused, and the worker selection gets more difficult. In this study, a decentralized accountable attribute-based authentication scheme is proposed and combined with blockchain to design a novel crowdsourcing scheme. Using decentralized attribute-based encryption and non-interactive zero-knowledge proof, the scheme protects the privacy of users’ identities with linkability and traceability, and the requester can devise access policies to select workers. In addition, the scheme improves the security of the system by implementing attribute authorization authority and tracking groups through the threshold secret sharing technique. Through experimental simulation and analysis, it is demonstrated that the scheme meets the requirements of time and storage overhead in practical application.

    参考文献
    [1] Isaac M, Benner K, Frenkel S. Uberhid 2016 breach, paying hackers to delete stolen data. 2017. https://www.nytimes.com/2017/11/21/technology/uber-hack.html
    [2] McInnis B, Cosley D, Nam C, Leshed G. Taking a HIT: Designing around rejection, mistrust, risk, and workers’ experiences in Amazon Mechanical Turk. In: Proc. of the 2016 CHI Conf. on Human Factors in Computing Systems. San Jose: ACM, 2016. 2271–2282. [doi: 10.1145/2858036.2858539]
    [3] Feng W, Yan Z. MCS-Chain: Decentralized and trustworthy mobile crowdsourcing based on blockchain. Future Generation Computer Systems, 2019, 95: 649–666.
    [4] Tan L, Xiao H, Shang XL, Wang Y, Ding F, Li WJ. A blockchain-based trusted service mechanism for crowdsourcing system. In: Proc. of the 91st IEEE Vehicular Technology Conf. Antwerp: IEEE, 2020. 1–6. [doi: 10.1109/VTC2020-Spring48590.2020.9128425]
    [5] Chaum D. Blind signatures for untraceable payments. In: Chaum D, Rivest RL, Sherman AT, eds. Advances in Cryptology. Boston: Springer, 1983. 199–203. [doi: 10.1007/978-1-4757-0602-4_18]
    [6] Camenisch J, Lysyanskaya A. An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Proc. of the 2001 Int’l Conf. on the Theory and Application of Cryptographic Techniques. Innsbruck: Springer, 2001. 93–118. [doi: 10.1007/3-540-44987-6_7]
    [7] Chaum D, van Heyst E. Group signatures. In: Proc. of the 1991 Workshop on the Theory and Application of Cryptographic Techniques. Brighton: Springer, 1991. 257–265. [doi: 10.1007/3-540-46416-6_22]
    [8] Liu JK, Yuen TH, Zhou JY. Forward secure ring signature without random oracles. In: Proc. of the 13th Int’l Conf. on Information and Communications Security. Beijing: Springer, 2011. 1–14. [doi: 10.1007/978-3-642-25243-3_1]
    [9] Li J, Au MH, Susilo W, Xie DQ, Ren K. Attribute-based signature and its applications. In: Proc. of the 5th ACM Symp. on Information, Computer and Communications Security. Beijing: ACM, 2010. 60–69. [doi: 10.1145/1755688.1755697]
    [10] Tan SY, Groß T. MoniPoly—An expressive q-SDH-based anonymous attribute-based credential system. In: Proc. of the 26th Int’l Conf. on the Theory and Application of Cryptology and Information Security. Daejeon: Springer, 2020. 498–526. [doi: 10.1007/978-3-030-64840-4_17]
    [11] Gu K, Wang KM, Yang LL. Traceable attribute-based signature. Journal of Information Security and Applications, 2019, 49: 102400.
    [12] Kaaniche N, Laurent M. Attribute-based signatures for supporting anonymous certification. In: Proc. of the 21st European Symp. on Research in Computer Security. Heraklion: Springer, 2016. 279–300. [doi: 10.1007/978-3-319-45744-4_14]
    [13] Ding SL, Zhao YM, Liu YY. Efficient traceable attribute-based signature. In: Proc. of the 13th IEEE Int’l Conf. on Trust, Security and Privacy in Computing and Communications. Beijing: IEEE, 2014. 582–589. [doi: 10.1109/TrustCom.2014.74]
    [14] Guo YW, Tang HK, Tan AD, Xu L, Gai KK, Jia XW. A privacy-preserving auditable approach using threshold tag-based encryption in consortium blockchain. In: Proc. of the 6th Int’l Conf. on Smart Computing and Communication. New York: Springer, 2022. 265–275. [doi: 10.1007/978-3-030-97774-0_24]
    [15] Zheng HB, Wu QH, Guan ZY, Qin B, He SY, Liu JW. Achieving liability in anonymous communication: Auditing and tracing. Computer Communications, 2019, 145: 1–13.
    [16] Hwang JY, Chen LQ, Cho HS, Nyang D. Short dynamic group signature scheme supporting controllable linkability. IEEE Trans. on Information Forensics and Security, 2015, 10(6): 1109–1124.
    [17] Fujisaki E, Suzuki K. Traceable ring signature. In: Proc. of the 10th Int’l Conf. on Practice and Theory in Public-key Cryptography. Beijing: Springer, 2007. 181–200. [doi: 10.1007/978-3-540-71677-8_13]
    [18] Au MH, Liu JK, Susilo W, Yuen TH. Secure ID-based linkable and revocable-iff-linked ring signature with constant-size construction. Theoretical Computer Science, 2013, 469: 1–14.
    [19] Rahaman S, Cheng L, Yao DF, Li H, Park JM. Provably secure anonymous-yet-accountable crowdsensing with scalable sublinear revocation. Proc. on Privacy Enhancing Technologies, 2017, 2017(4): 384–403.
    [20] Lin C, He DB, Zeadally S, Kumar N, Choo KKR. SecBCS: A secure and privacy-preserving blockchain-based crowdsourcing system. Science China Information Sciences, 2020, 63(3): 130102.
    [21] Lu Y, Tang Q, Wang GL. ZebraLancer: Private and anonymous crowdsourcing system atop open blockchain. In: Proc. of the 38th IEEE Int’l Conf. on Distributed Computing Systems. Vienna: IEEE, 2018. 853–865. [doi: 10.1109/ICDCS.2018.00087]
    [22] Li P, Lai JZ, Wu YD. Accountable attribute-based authentication with fine-grained access control and its application to crowdsourcing. Frontiers of Computer Science, 2023, 17(1): 171802.
    [23] Chen F, Wang JH, Jiang CK, Xiang T, Yang YY. Blockchain based non-repudiable IoT data trading: Simpler, faster, and cheaper. In: Proc. of the 2022 IEEE Conf. on Computer Communications. London: IEEE, 2022. 1958–1967.
    [24] Shamir A. How to share a secret. Communications of the ACM, 1979, 22(11): 612–613.
    [25] Blakley GR. Safeguarding cryptographic keys. In: Proc. of the 1979 Int’l Workshop on Managing Requirements Knowledge. New York: IEEE, 1979. 313–313. [doi: 10.1109/MARK.1979.8817296]
    [26] Pedersen TP. A threshold cryptosystem without a trusted party. In: Proc. of the 1991 Workshop on the Theory and Application of Cryptographic Techniques. Brighton: Springer, 1991. 522–526. [doi: 10.1007/3-540-46416-6_47]
    [27] Goyal V, Pandey O, Sahai A, Waters B. Attribute-based encryption for fine-grained access control of encrypted data. In: Proc. of the 13th ACM Conf. on Computer and Communications Security. Alexandria: ACM, 2006. 89–98. [doi: 10.1145/1180405.1180418]
    [28] Rouselakis Y, Waters B. Efficient statically-secure large-universe multi-authority attribute- based encryption. In: Proc. of the 19th Int’l Conf. on Financial Cryptography and Data Security. San Juan: Springer, 2015. 315–332. [doi: 10.1007/978-3-662-47854-7_19]
    [29] Lewko A, Waters B. Decentralizing attribute-based encryption. In: Proc. of the 30th Annual Int’l Conf. on the Theory and Applications of Cryptographic Techniques. Tallinn: Springer, 2011. 568–588. [doi: 10.1007/978-3-642-20465-4_31]
    [30] Ben-Sasson E, Chiesa A, Tromer E, Virza M. Succinct non-interactive zero knowledge for a von neumann architecture. In: Proc. of the 23rd USENIX Conf. Security Symp. San Diego: USENIX Association, 2014. 781–796.
    [31] Elgamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. on Information Theory, 1985, 31(4): 469–472.
    [32] Zheng HB, Wu QH, Qin B, Zhong L, He SY, Liu JW. Linkable group signature for auditing anonymous communication. In: Proc. of the 23rd Australasian Conf. Wollongong: Springer, 2018. 304–321. [doi: 10.1007/978-3-319-93638-3_18]
    [33] Okamoto T, Takashima K. Decentralized attribute-based signatures. In: Proc. of the 16th Int’l Conf. on Practice and Theory in Public-key Cryptography. Nara: Springer, 2013: 125–142. [doi: 10.1007/978-3-642-36362-7_9]
    [34] Lu AR, Li WH, Yao YZ, Yu NH. TCABRS: An efficient traceable constant-size attribute-based ring signature scheme for electronic health record system. In: Proc. of the 6th IEEE Int’l Conf. on Data Science in Cyberspace. Shenzhen: IEEE, 2021. 106–113.
    [35] El Kaafarani A, Chen LQ, Ghadafi E, Davenport J. Attribute-based signatures with user-controlled linkability. In: Proc. of the 13th Int’l Conf. Heraklion: Springer, 2014. 256–269. [doi: 10.1007/978-3-319-12280-9_17]
    [36] El Kaafarani A, Ghadafi E. Attribute-based signatures with user-controlled linkability without random oracles. In: Proc. of the 16th IMA Int’l Conf. Oxford: Springer, 2017. 161–184. [doi: 10.1007/978-3-319-71045-7_9]
    [37] Hong JN, Xue KP, Gai N, Wei DSL, Hong PL. Service outsourcing in F2C architecture with attribute-based anonymous access control and bounded service number. IEEE Trans. on Dependable and Secure Computing, 2020, 17(5): 1051–1062.
    [38] Ghaffaripour S, Miri A. A decentralized, privacy-preserving and crowdsourcing-based approach to medical research. In: Proc. of the 2020 IEEE Int’l Conf. on Systems, Man, and Cybernetics. Toronto: IEEE, 2020. 4510–4515. [doi: 10.1109/SMC42975.2020.9283027]
    [39] Li M, Weng J, Yang AJ, Lu W, Zhang Y, Hou L, Liu JN, Xiang Y, Deng RH. CrowdBC: A blockchain-based decentralized framework for crowdsourcing. IEEE Trans. on Parallel and Distributed Systems, 2019, 30(6): 1251–1266.
    [40] Feng W, Yan Z, Yang LT, Zheng QH. Anonymous authentication on trust in blockchain-based mobile crowdsourcing. IEEE Internet of Things Journal, 2022, 9(16): 14185–14202.
    [41] Botrel G, Piellard T, Tabaie T, et al. Consensys/gnark: v0.10.0. 2024. https://zenodo.org/records/11034183 [doi: 10.5281/zenodo.5819104]
    [42] Josefsson S, Liusvaara I. Edwards-curve digital signature algorithm (EdDSA). 2017. https://www.rfc-editor.org/pdfrfc/rfc8032.txt.pdf
    相似文献
    引证文献
引用本文

陶静怡,张亮,阚海斌.基于区块链和去中心化可问责属性认证的众包方案.软件学报,2025,36(4):1844-1858

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-07
  • 最后修改日期:2024-02-07
  • 在线发布日期: 2024-07-03
文章二维码
您是第19780495位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号