摘要:基于进化优化的消息传递接口(message-passing interface, MPI)程序路径覆盖测试中, 进化个体适应值的评价需要反复执行MPI程序, 而程序的重复执行往往需要高昂的计算成本. 鉴于此, 提出一种代理辅助多任务进化优化引导的MPI程序路径覆盖测试用例生成方法, 该方法能够显著约减MPI程序的实际执行次数, 进而提高测试效率. 首先, 面向MPI程序目标路径内每条目标子路径, 训练相应的代理模型; 然后, 基于对应每条目标子路径的代理模型, 估计相应测试用例生成优化任务中进化个体的适应值, 并形成候选测试用例集; 最后, 基于候选测试用例集及其面向每条目标子路径的真实适应值, 更新对应每条目标子路径的代理模型. 将所提方法应用于7个基准MPI程序的基本路径覆盖测试中, 并与其他若干先进方法比较. 实验结果表明, 所提方法能够在确保测试用例生成高有效性的前提下, 显著提高测试效率.