面向属性网络社团检测的度修正广义随机块模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP311

基金项目:


Degree Corrected General Stochastic Block Model for Community Detection in Attributed Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随机块模型可以拟合各种网络的生成, 挖掘网络的隐含结构与潜在联系, 在社团检测中具有明显的优势. 广义随机块模型GSB是基于链接社团的思想发现广义社团的, 但其仅适用于有向无属性网络. 针对无向属性网络, 对网络拓扑信息建模的同时对节点属性进行建模, 提出一种度修正的属性网络广义随机块模型DCGSB (degree corrected general stochastic block model). 在该模型中, 假设网络拓扑信息和属性信息的生成过程都服从幂函数形式的分布, 并且引入节点的度来刻画网络的无标度特性, 可以更好地拟合真实网络的生成. 利用期望最大化算法对DCGSB模型的参数进行估计, 通过硬划分处理, 得到节点隶属度, 进而完成社团检测. 在3个含有不同结构的真实属性网络数据集上进行实验, 并与10种社团检测算法进行对比, 结果表明DCGSB模型不仅继承了GSB模型的优点, 能发现广义社团, 而且由于属性信息和节点度的引入, 使其社团检测能力优于其他10种比较算法.

    Abstract:

    Stochastic block models can fit the generation of various networks, mining implicit structures and potential connections within these networks. Thus, they have significant advantages in community detection. General stochastic block (GSB) models discover general communities based on link communities, but they are only applicable to directed non-attributed networks. This study proposes a degree corrected general stochastic block (DCGSB) model for undirected attributed networks which models both network topology information and node attributes. In the DCGSB model, it is assumed that the generation of network topology information and node attributes follows a distribution in the form of power functions. Node degrees are introduced to characterize the scale-free property of networks, which allows the model to better fit the generation of real networks. The expectation-maximization algorithm is employed to estimate the parameters of the DCGSB model, and node-community memberships are obtained by hard partition to complete community detection. Experiments are conducted on three real attributed network datasets containing different network structures, and the proposed model is compared with ten existing community detection algorithms. Results show that the DCGSB model not only inherits the advantages of GSB models in identifying general communities but also outperforms the ten algorithms in community detection due to the introduction of attribute information and node degrees.

    参考文献
    相似文献
    引证文献
引用本文

王笑,戴芳,郭文艳,王军锋.面向属性网络社团检测的度修正广义随机块模型.软件学报,,():1-13

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-23
  • 最后修改日期:2024-01-12
  • 录用日期:
  • 在线发布日期: 2024-12-11
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号