共享和特定表示的多视图属性图聚类
作者:
中图分类号:

TP311

基金项目:

国家自然科学基金(61976128); 山西省科技创新人才团队(202204051002016)


Multi-view Attributed Graph Clustering Based on Shared and Specific Representation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • | | | |
  • 文章评论
    摘要:

    现有的多视图属性图聚类方法通常是在融合多个视图的统一表示中学习一致信息与互补信息, 然而先融合再学习的方法不仅会损失原始各个视图的特定信息, 而且统一表示难以兼顾一致性与互补性. 为了保留各个视图的原始信息, 采用先学习再融合的方式, 先分别学习每个视图的共享表示与特定表示再进行融合, 更细粒度地学习多视图的一致信息和互补信息, 构建一种基于共享和特定表示的多视图属性图聚类模型(multi-view attribute graph clustering based on shared and specific representation, MSAGC). 具体来说, 首先通过多视图编码器获得每个视图的初级表示, 进而获得每个视图的共享信息和特定信息; 然后对齐视图共享信息来学习多视图的一致信息, 联合视图特定信息来利用多视图的互补信息, 通过差异性约束来处理冗余信息; 之后训练多视图解码器重构图的拓扑结构和属性特征矩阵; 最后, 附加自监督聚类模块使得图表示的学习和聚类任务趋向一致. MSAGC的有效性在真实的多视图属性图数据集上得到了很好地验证.

    Abstract:

    Existing multi-view attributed graph clustering methods usually learn consistent information and complementary information in a unified representation of multiple views. However, not only will the specific information of the original views be lost under the method of learning after fusion, but also the consistency and complementarity are difficult to balance under the unified representation. To retain the original information of each view, this study adopts the method of learning first and then fusing. Firstly, the shared representation and specific representation of each view are learned separately before fusion, and the consistent information and complementary information of multiple views are learned more fine-grained. A multi-view attributed graph clustering model based on shared and specific representation (MSAGC) is constructed. Specifically, the primary representation of each view is obtained by a multi-view graph encoder, and then the shared information and specific information of each view are obtained. Then the consistent information of multiple views is learned by aligning the view shared information, the complementary information of multiple views is utilized by combining the view specific information, and the redundant information is processed through the difference constraint. After that, the topological structure and attribute feature matrix of the multi-view decoder reconstruction graph are trained. Finally, the additional self-supervised clustering module makes the learning and clustering tasks of graph representation tend to be consistent. The effectiveness of MSAGC is well verified on real multi-view attributed graph datasets.

    参考文献
    [1] Bedi P, Sharma C. Community detection in social networks. WIREs Data Mining and Knowledge Discovery, 2016, 6(3): 115–135.
    [2] Yuan MM, Guo X, Wu LW, Zhang Y, Xiao NJ, Ning DL, Shi Z, Zhou XS, Wu LY, Yang YF, Tiedje JM, Zhou JZ. Climate warming enhances microbial network complexity and stability. Nature Climate Change, 2021, 11(4): 343–348.
    [3] Xue JW, Jiang N, Liang SW, Pang QY, Yabe T, Ukkusuri SV, Ma JZ. Quantifying the spatial homogeneity of urban road networks via graph neural networks. Nature Machine Intelligence, 2022, 4(3): 246–257.
    [4] Wang C, Pan SR, Hu RQ, Long GD, Jiang J, Zhang CQ. Attributed graph clustering: A deep attentional embedding approach. In: Proc. of the 28th Int’l Joint Conf. on Artificial Intelligence. Macao: AAAI, 2019. 3670–3676.
    [5] Lin ZP, Kang Z. Graph filter-based multi-view attributed graph clustering. In: Proc. of the 30th Int’l Joint Conf. on Artificial Intelligence. Montreal: IJCAI, 2021. 2723–2729.
    [6] Wu ZL, Pan SR, Chen FW, Long GD, Zhang CQ, Yu PS. A comprehensive survey on graph neural networks. IEEE Trans. on Neural Networks and Learning Systems, 2021, 32(1): 4–24.
    [7] Fan SH, Wang X, Shi C, Lu EM, Lin K, Wang B. One2Multi graph autoencoder for multi-view graph clustering. In: Proc. of the 2020 Web Conf. Taipei: ACM, 2020. 3070–3076. [doi: 10.1145/3366423.3380079]
    [8] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. In: Proc. of the 5th Int’l Conf. on Learning Representations. Toulon: ICLR, 2017.
    [9] Wang YM, Chang DX, Fu ZQ, Zhao Y. Consistent multiple graph embedding for multi-view clustering. IEEE Trans. on Multimedia, 2023, 25: 1008–1018.
    [10] Zhang DK, Yin J, Zhu XQ, Zhang CQ. Network representation learning: A survey. IEEE Trans. on Big Data, 2020, 6(1): 3–28.
    [11] Goyal P, Ferrara E. Graph embedding techniques, applications, and performance: A survey. Knowledge-based Systems, 2018, 151: 78–94.
    [12] 赵兴旺, 王淑君, 刘晓琳, 梁吉业. 基于二部图的联合谱嵌入多视图聚类算法. 软件学报. http://www.jos.org.cn/1000-9825/6995.htm
    Zhao XW, Wang SJ, Liu XL, Liang JY. Joint spectral embedding multi-view clustering algorithm based on bipartite graphs. Ruan Jian Xue Bao/Journal of Software (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6995.htm
    [13] Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations. In: Proc. of the 20th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. New York: ACM, 2014. 701–710. [doi: 10.1145/2623330.2623732]
    [14] Grover A, Leskovec J. node2vec: Scalable feature learning for networks. In: Proc. of the 22nd ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016. 855–864. [doi: 10.1145/2939672.2939754]
    [15] Tang J, Qu M, Wang MZ, Zhang M, Yan J, Mei QZ. LINE: Large-scale information network embedding. In: Proc. of the 24th Int’l Conf. on World Wide Web. Florence: Int’l World Wide Web Conf. Steering Committee, 2015. 1067–1077.
    [16] Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323–2326.
    [17] Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Proc. of the 14th Int’l Conf. on Neural Information Processing Systems. Vancouver: MIT Press, 2001. 585–591.
    [18] Luo DJ, Ding C, Nie FP, Huang H. Cauchy graph embedding. In: Proc. of the 28th Int’l Conf. on Machine Learning. Bellevue: Omnipress, 2011. 553–560.
    [19] Cao SS, Lu W, Xu QK. GraRep: Learning graph representations with global structural information. In: Proc. of the 24th ACM Int’l Conf. on Information and Knowledge Management. Melbourne: ACM, 2015. 891–900. [doi: 10.1145/2806416.2806512]
    [20] Ou MD, Cui P, Pei J, Zhang ZW, Zhu WW. Asymmetric transitivity preserving graph embedding. In: Proc. of the 22nd ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016. 1105–1114. [doi: 10.1145/2939672.2939751]
    [21] Lin ZP, Kang Z, Zhang LZ, Tian L. Multi-view attributed graph clustering. IEEE Trans. on Knowledge and Data Engineering, 2023, 35(2): 1872–1880.
    [22] Pan EL, Kang Z. High-order multi-view clustering for generic data. Information Fusion, 2023, 100: 101947.
    [23] 刘杰, 尚学群, 宋凌云, 谭亚聪. 图神经网络在复杂图挖掘上的研究进展. 软件学报, 2022, 33(10): 3582–3618. http://www.jos.org.cn/1000-9825/6626.htm
    Liu J, Shang XQ, Song LY, Tan YC. Progress of graph neural networks on complex graph mining. Ruan Jian Xue Bao/Journal of Software, 2022, 33(10): 3582–3618 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6626.htm
    [24] Kipf TN, Welling M. Variational graph auto-encoders. arXiv:1611.07308, 2016.
    [25] Pan SR, Hu RQ, Fung SF, Long GD, Jiang J, Zhang CQ. Learning graph embedding with adversarial training methods. IEEE Trans. on Cybernetics, 2020, 50(6): 2475–2487.
    [26] Bo DY, Wang X, Shi C, Zhu MQ, Lu EM, Cui P. Structural deep clustering network. In: Proc. of the 2020 Web Conf. Taipei: ACM, 2020. 1400–1410. [doi: 10.1145/3366423.3380214]
    [27] Tu WX, Zhou SH, Liu XW, Guo XF, Cai ZP, Zhu E, Cheng JR. Deep fusion clustering network. In: Proc. of the 35th AAAI Conf. on Artificial Intelligence. AAAI, 2021. 9978–9987.
    [28] Wang BY, Wang YF, He XX, Hu YL, Yin BC. Multi-graph convolutional clustering network. IET Signal Processing, 2022, 16(6): 650–661.
    [29] Cai EC, Huang J, Huang BS, Xu S, Zhu J. GRAE: Graph recurrent autoencoder for multi-view graph clustering. In: Proc. of the 4th Int’l Conf. on Algorithms, Computing and Artificial Intelligence. Sanya: Association for Computing Machinery, 2021. 72.
    [30] Sun DD, Li DS, Ding ZL, Zhang XY, Tang J. A2AE: Towards adaptive multi-view graph representation learning via all-to-all graph autoencoder architecture. Applied Soft Computing, 2022, 125: 109193.
    [31] 蒋亦樟, 邓赵红, 王骏, 钱鹏江, 王士同. 熵加权多视角协同划分模糊聚类算法. 软件学报, 2014, 25(10): 2293–2311. http://www.jos.org.cn/1000-9825/4510.htm
    Jiang YZ, Deng ZH, Wang J, Qian PJ, Wang ST. Collaborative partition multi-view fuzzy clustering algorithm using entropy weighting. Ruan Jian Xue Bao/Journal of Software, 2014, 25(10): 2293–2311 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4510.htm
    [32] Liu L, Kang Z, Ruan JJ, He XX. Multilayer graph contrastive clustering network. Information Sciences, 2022, 613: 256–267.
    [33] Li YM, Yang M, Zhang ZF. A survey of multi-view representation learning. IEEE Trans. on Knowledge and Data Engineering, 2018, 31(10): 1863–1883.
    [34] 刘晓琳, 白亮, 赵兴旺, 梁吉业. 基于多阶近邻融合的不完整多视图聚类算法. 软件学报, 2022, 33(4): 1354–1372. http://www.jos.org.cn/1000-9825/6471.htm
    Liu XL, Bai L, Zhao XW, Liang JY. Incomplete multi-view clustering algorithm based on multi-order neighborhood fusion. Ruan Jian Xue Bao/Journal of Software, 2022, 33(4): 1354–1372 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6471.htm
    [35] Jia XD, Jing XY, Zhu XK, Chen SC, Du B, Cai ZY, He ZY, Yue D. Semi-supervised multi-view deep discriminant representation learning. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2021, 43(7): 2496–2509.
    [36] Luo SR, Zhang CQ, Zhang W, Cao XC. Consistent and specific multi-view subspace clustering. In: Proc. of the 32nd AAAI Conf. on Artificial Intelligence. New Orleans: AAAI, 2018. 3730–3737. [doi: 10.1609/aaai.v32i1.11617]
    [37] Zhu WC, Lu JW, Zhou J. Structured general and specific multi-view subspace clustering. Pattern Recognition, 2019, 93: 392–403.
    [38] Yin HW, Hu WJ, Li FZ, Lou JG. One-step multi-view spectral clustering by learning common and specific nonnegative embeddings. Int’l Journal of Machine Learning and Cybernetics, 2021, 12(7): 2121–2134.
    [39] Hu JL, Lu JW, Tan YP. Sharable and individual multi-view metric learning. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2018, 40(9): 2281–2288.
    [40] Xie JY, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis. In: Proc. of the 33rd Int’l Conf. on Machine Learning. New York: JMLR.org, 2016. 478–487.
    [41] Van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9(86): 2579–2605.
    [42] Zhang HM, Qiu LW, Yi LL, Song YQ. Scalable multiplex network embedding. In: Proc. of the 27th Int’l Joint Conf. on Artificial Intelligence. Stockholm: AAAI, 2018. 3082–3088.
    [43] Liu WY, Chen PY, Yeung S, Suzumura T, Chen LL. Principled multilayer network embedding. In: Proc. of the 2017 IEEE Int’l Conf. on Data Mining Workshops. New Orleans: IEEE, 2017. 134–141. [doi: 10.1109/ICDMW.2017.23]
    [44] Xia RK, Pan Y, Du L, Yin J. Robust multi-view spectral clustering via low-rank and sparse decomposition. In: Proc. of the 28th AAAI Conf. on Artificial Intelligence. Québec: AAAI, 2014. 2149–2155. [doi: 10.1609/aaai.v28i1.8950]
    [45] Nie FP, Li J, Li XL. Self-weighted multiview clustering with multiple graphs. In: Proc. of the 26th Int’l Joint Conf. on Artificial Intelligence. Melbourne: AAAI, 2017. 2564–2570.
    [46] Liang JY, Bai L, Dang CY, Cao FY. The k-means-type algorithms versus imbalanced data distributions. IEEE Trans. on Fuzzy Systems, 2012, 20(4): 728–745.
    [47] Bouyer A, Roghani H. LSMD: A fast and robust local community detection starting from low degree nodes in social networks. Future Generation Computer Systems, 2020, 113: 41–57.
    [48] Strehl A, Ghosh J. Cluster ensembles—A knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research, 2003, 3: 583–617.
    [49] Kingma DP, Ba J. Adam: A method for stochastic optimization. In: Proc. of the 3rd Int’l Conf. on Learning Representations. San Diego: ICLR, 2015.
    [50] Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and an algorithm. In: Proc. of the 14th Int’l Conf. on Neural Information Processing Systems. Vancouver: MIT Press, 2001. 849–856.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹付元,陈晓惠.共享和特定表示的多视图属性图聚类.软件学报,2025,36(3):1254-1267

复制
分享
文章指标
  • 点击次数:206
  • 下载次数: 1878
  • HTML阅读次数: 111
  • 引用次数: 0
历史
  • 收稿日期:2023-06-16
  • 最后修改日期:2024-03-07
  • 在线发布日期: 2024-07-03
文章二维码
您是第19733730位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号