摘要:现有的多视图属性图聚类方法通常是在融合多个视图的统一表示中学习一致信息与互补信息, 然而先融合再学习的方法不仅会损失原始各个视图的特定信息, 而且统一表示难以兼顾一致性与互补性. 为了保留各个视图的原始信息, 采用先学习再融合的方式, 先分别学习每个视图的共享表示与特定表示再进行融合, 更细粒度地学习多视图的一致信息和互补信息, 构建一种基于共享和特定表示的多视图属性图聚类模型(multi-view attribute graph clustering based on shared and specific representation, MSAGC). 具体来说, 首先通过多视图编码器获得每个视图的初级表示, 进而获得每个视图的共享信息和特定信息; 然后对齐视图共享信息来学习多视图的一致信息, 联合视图特定信息来利用多视图的互补信息, 通过差异性约束来处理冗余信息; 之后训练多视图解码器重构图的拓扑结构和属性特征矩阵; 最后, 附加自监督聚类模块使得图表示的学习和聚类任务趋向一致. MSAGC的有效性在真实的多视图属性图数据集上得到了很好地验证.