基于槽依赖建模的跨领域槽填充方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

国家自然科学基金(62176174, 61936010)


Slot Dependency Modeling for Cross-domain Slot Filling
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    作为任务型对话系统的一个核心部分, 槽填充任务通过识别话语中存在的特定槽实体来服务于后续的下游任务. 但是, 针对一个特定领域, 需要大量有标记的数据作为支撑, 收集成本较高. 在此背景下, 跨领域槽填充任务出现, 该任务通过迁移学习的方式高效地解决了数据稀缺问题. 已有的跨领域槽填充方法都忽视了槽类型之间在话语中存在的依赖, 导致现有的模型在迁移到新领域时性能欠佳. 为了弥补这个缺陷, 提出基于槽依赖建模的跨领域槽填充方法. 基于生成式预训练模型的提示学习方法, 设计一种融入槽依赖信息的提示模板, 该模板建立了不同槽类型之间的隐式依赖关系, 充分挖掘预训练模型的实体预测性能. 此外, 为了进一步提高槽类型和槽实体与话语文本之间的语义依赖, 增加了话语填充子任务, 通过反向填充的方式增强话语与槽实体的内在联系. 通过对多个领域的迁移实验表明, 所提模型在零样本和少样本的设置上取得了较大的性能提升. 此外, 对模型中的主要结构进行了详细地分析和消融实验.

    Abstract:

    This study considers slot filling as a crucial component of task-oriented dialogue systems, which serves downstream tasks by identifying specific slot entities in utterances. However, in a specific domain, it necessitates a large amount of labeled data, which is costly to collect. In this context, cross-domain slot filling emerges and efficiently addresses the issue of data scarcity through transfer learning. However, existing methods overlook the dependencies between slot types in utterances, leading to the suboptimal performance of existing models when transferring to new domains. To address this issue, a cross-domain slot filling method based on slot dependency modeling is proposed in this study. Leveraging the prompt learning approach based on generative pre-trained models, a prompt template integrating slot dependency information is designed, establishing implicit dependency relationships between different slot types and fully exploiting the predictive performance of slot entities in the pre-trained model. Furthermore, to enhance the semantic dependencies between slot types, slot entities, and utterance texts, discourse filling subtask is introduced in this study to strengthen the inherent connections between utterances and slot entities through reverse filling. Transfer experiments across multiple domains demonstrate significant performance improvements in zero-shot and few-shot settings achieved by the proposed model. Additionally, a detailed analysis of the main structures in the model and ablation experiments are conducted in this study to further validate the necessity of each part of the model.

    参考文献
    相似文献
    引证文献
引用本文

王泽,周夏冰,鞠鑫,王中卿,周国栋.基于槽依赖建模的跨领域槽填充方法.软件学报,,():1-13

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-09
  • 最后修改日期:2024-01-08
  • 录用日期:
  • 在线发布日期: 2024-06-14
  • 出版日期:
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号