无监督多视图特征选择研究进展
作者:
基金项目:

国家自然科学基金(62066027, 62076117); 江西省自然科学基金(20212BAB212011); 江西省智慧城市重点实验室科技创新平台项目(20192BCD40002)


Recent Advances in Unsupervised Multi-view Feature Selection
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [136]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    多视图数据从不同角度描述数据对象, 数据在不同视图中的特征表示之间存在着相关性、互补性及多样性信息. 综合利用这些信息对多视图数据处理至关重要. 然而, 多视图数据通常具有高维度特点, 且常含有噪声特征, 这为多视图数据的处理与分析带来了许多困难. 无监督多视图特征选择无需样本标记信息, 从多个视图源的原始高维特征中学习更紧凑、更准确的特征表示以提高数据分析的效果, 在多视图数据处理领域起着重要作用. 根据已有的无监督多视图特征选择模型的工作机制的异同, 对这些模型进行归纳和总结, 分析其中存在的不足, 并指出未来研究的方向.

    Abstract:

    Multi-view data depicts objects from different perspectives, with features in different views exhibiting correlations, complementary, and diverse information. Therefore, it is crucial to make full use of this information for the processing of multi-view data. However, the processing and analysis of multi-view data will be difficult due to the inherent challenges of dealing with a vast number of features and the presence of noise features in multi-view data. Unsupervised multi-view feature selection, emerging as a critical component in multi-view data learning, efficiently learns more accurate and compact representations from the original high-dimensional multi-view data without relying on label information to remarkably improve the performance of data analysis. This study reviews and categorizes these models based on the similarities and differences in the working mechanisms of existing unsupervised multi-view feature selection models, while also detailing their limitations. Furthermore, this study points out promising future research directions in the field of unsupervised feature selection.

    参考文献
    [1] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proc. of the 2005 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005. 886–893. [doi: 10.1109/CVPR.2005.177]
    [2] Oliva A, Torralba A. Modeling the shape of the scene: A holistic representation of the spatial envelope. Int’l Journal of Computer Vision, 2001, 42(3): 145–175.
    [3] Lowe DG. Object recognition from local scale-invariant features. In: Proc. of the 1999 IEEE Int’l Conf. on Computer Vision. Kerkyra: IEEE, 1999. 1150–1157. [doi: 10.1109/ICCV.1999.790410]
    [4] Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971–987.
    [5] Imangaliyev S, Levin E. Unsupervised multi-view feature selection for tumor subtype identification. In: Proc. of the 8th ACM Int’l Conf. on Bioinformatics, Computational Biology, and Health Informatics. 2017. 491–499.
    [6] Tang JL, Hu X, Gao HJ, Liu H. Unsupervised feature selection for multi-view data in social media. In: Proc. of the 13th SIAM Int’l Conf. on Data Mining. Austin: SIAM, 2013. 270–278. [doi: 10.1137/1.9781611972832.3]
    [7] Li YX, Shi X, Du CL, Liu Y, Wen YG. Manifold regularized multi-view feature selection for social image annotation. Neurocomputing, 2016, 204: 135–141.
    [8] Feng YF, Xiao J, Zhuang YT, Liu XM. Adaptive unsupervised multi-view feature selection for visual concept recognition. In: Proc. of the 11th Asian Conf. on Computer Vision. Daejeon: Springer, 2013. 343–357. [doi: 10.1007/978-3-642-37331-2_26]
    [9] Wang Z, Feng YF, Qi T, Yang XS, Zhang JJ. Adaptive multi-view feature selection for human motion retrieval. Signal Processing, 2016, 120: 691–701.
    [10] Zhang LY, Liu ML, Wang RF, Du TT, Li JY. Multi-view unsupervised feature selection with dynamic sample space structure. In: Proc. of the 2019 IEEE Symp. Series on Computational Intelligence. Xiamen: IEEE, 2019. 2641–2648.
    [11] 曹容玮, 祝继华, 郝问裕, 张长青, 张茁涵, 李钟毓. 双加权多视角子空间聚类算法. 软件学报, 2022, 33(2): 585–597. http://www.jos.org.cn/1000-9825/6148.htm
    Cao RW, Zhu JH, Hao WY, Zhang CQ, Zhang ZH, Li ZY. Dual weighted multi-view subspace clustering. Ruan Jian Xue Bao/Journal of Software, 2022, 33(2): 585–597 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6148.htm
    [12] Hsieh TY, Sun YW, Wang SH, Honavar V. Adaptive structural co-regularization for unsupervised multi-view feature selection. In: Proc. of the 2019 IEEE Int’l Conf. on Big Knowledge. Beijing: IEEE, 2019. 87–96. [doi: 10.1109/ICBK.2019.00020]
    [13] Emani CK, Cullot N, Nicolle C. Understandable big data: A survey. Computer Science Review, 2015, 17: 70–81.
    [14] Hou CP, Nie FP, Tao H, Yi DY. Multi-view unsupervised feature selection with adaptive similarity and view weight. IEEE Trans. on Knowledge and Data Engineering, 2017, 29(9): 1998–2011.
    [15] Wei XK, Cao BK, Philip YS. Multi-view unsupervised feature selection by cross-diffused matrix alignment. In: Proc. of the 2017 Int’l Joint Conf. on Neural Networks. Anchorage: IEEE, 2017. 494–501. [doi: 10.1109/IJCNN.2017.7965894]
    [16] Lu CY, Min H, Gui J, Zhu L, Lei YK. Face recognition via weighted sparse representation. Journal of Visual Communication and Image Representation, 2013, 24(2): 111–116.
    [17] Mi JX, Lei DJ, Gui J. A novel method for recognizing face with partial occlusion via sparse representation. Optik, 2013, 124(24): 6786–6789.
    [18] 宋磊磊. 类标噪声研究综述. 现代计算机, 2016, (3): 20–23.
    Song LL. Research overview of class label noise. Modern Computer, 2016, (3): 20–23 (in Chinese with English abstract).
    [19] Dave RN. Characterization and detection of noise in clustering. Pattern Recognition Letters, 1991, 12(11): 657–664.
    [20] Li Y, Li T, Liu H. Recent advances in feature selection and its applications. Knowledge and Information Systems, 2017, 53(3): 551–557.
    [21] Li JD, Liu H. Challenges of feature selection for big data analytics. IEEE Intelligent Systems, 2017, 32(2): 9–15.
    [22] 刘艺, 曹建军, 刁兴春, 周星. 特征选择稳定性研究综述. 软件学报, 2018, 29(9): 2559–2579. http://www.jos.org.cn/1000-9825/5394.htm
    Liu Y, Cao JJ, Diao XC, Zhou X. Survey on stability of feature selection. Ruan Jian Xue Bao/Journal of Software, 2018, 29(9): 2559–2579 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5394.htm
    [23] Fakhraei S, Soltanian-Zadeh H, Fotouhi F. Bias and stability of single variable classifiers for feature ranking and selection. Expert Systems with Applications, 2014, 41(15): 6945–6958.
    [24] 李郅琴, 杜建强, 聂斌, 熊旺平, 黄灿奕, 李欢. 特征选择方法综述. 计算机工程与应用, 2019, 55(24): 10–19.
    Li ZQ, Du JQ, Nie B, Xiong WP, Huang CY, Li H. Summary of feature selection methods. Computer Engineering and Applications, 2019, 55(24): 10–19 (in Chinese with English abstract).
    [25] Zhang R, Nie FP, Li XL, Wei X. Feature selection with multi-view data: A survey. Information Fusion, 2019, 50: 158–167.
    [26] Fang Z, Zhang ZF. Discriminative feature selection for multi-view cross-domain learning. In: Proc. of the 22nd ACM Int’l Conf. on Information & Knowledge Management. San Francisco: ACM, 2013. 1321–1330. [doi: 10.1145/2505515.2505532]
    [27] Zhang YS, Wu J, Cai ZH, Yu PS. Multi-view multi-label learning with sparse feature selection for image annotation. IEEE Trans. on Multimedia, 2020, 22(11): 2844–2857.
    [28] 张东方, 陈海燕, 王建东. 半监督特征选择综述. 计算机应用研究, 2021, 38(2): 321–329.
    Zhang DF, Chen HY, Wang JD. Survey of semi-supervised feature selection methods. Application Research of Computers, 2021, 38(2): 321–329 (in Chinese with English abstract).
    [29] Sheikhpour R, Sarram MA, Gharaghani S, Zare Chahooki MA. A survey on semi-supervised feature selection methods. Pattern Recognition, 2017, 64: 141–158.
    [30] Solorio-Fernández S, Carrasco-Ochoa JA, Martínez-Trinidad JF. A review of unsupervised feature selection methods. Artificial Intelligence Review, 2020, 53(2): 907–948.
    [31] 谢娟英, 丁丽娟, 王明钊. 基于谱聚类的无监督特征选择算法. 软件学报, 2020, 31(4): 1009–1024. http://www.jos.org.cn/1000-9825/5927.htm
    Xie JY, Ding LJ, Wang MZ. Spectral clustering based unsupervised feature selection algorithms. Ruan Jian Xue Bao/Journal of Software, 2020, 31(4): 1009–1024 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5927.htm
    [32] Guyon I, Elisseeff A. An introduction to variable and feature selection. The Journal of Machine Learning Research, 2003, 3(3): 1157–1182.
    [33] 吴兴宇, 江兵兵, 吕胜飞, 王翔宇, 陈秋菊, 陈欢欢. 基于马尔科夫边界发现的因果特征选择算法综述. 模式识别与人工智能, 2022, 35(5): 422–438.
    Wu XY, Jiang BB, Lü SF, Wang XY, Chen QJ, Chen HH. A survey on causal feature selection based on Markov boundary discovery. Pattern Recognition and Artificial Intelligence, 2022, 35(5): 422–438 (in Chinese with English abstract).
    [34] Alibeigi M, Hashemi S, Hamzeh A. Unsupervised feature selection based on the distribution of features attributed to imbalanced data sets. Int’l Journal of Artificial Intelligence and Expert Systems, 2011, 2(1): 14–22.
    [35] Zhou PY, Chan KCC. An unsupervised attribute clustering algorithm for unsupervised feature selection. In: Proc. of the 2015 IEEE Int’l Conf. on Data Science and Advanced Analytics. Paris: IEEE, 2015. 1–7. [doi: 10.1109/DSAA.2015.7344857]
    [36] Hou CP, Nie FP, Yi DY, Wu Y. Feature selection via joint embedding learning and sparse regression. In: Proc. of the 22nd Int’l Joint Conf. on Artificial Intelligence. Barcelona: ACM, 2011. 1324–1329. [doi: 10.5555/2283516.2283617]
    [37] Deepthi PS, Thampi SM. Unsupervised gene selection using particle swarm optimization and K-means. In: Proc. of the 2nd ACM IKDD Conf. on Data Sciences. Bangalore: ACM, 2015. 134–135. [doi: 10.1145/2732587.2732615]
    [38] Wang Q, Jiang X, Chen ML, Li XL. Autoweighted multiview feature selection with graph optimization. IEEE Trans. on Cybernetics, 2022, 52(12): 12966–12977.
    [39] Li YM, Yang M, Zhang ZF. A survey of multi-view representation learning. IEEE Trans. on Knowledge and Data Engineering, 2019, 31(10): 1863–1883.
    [40] Nie FP, Zhu W, Li XL. Unsupervised feature selection with structured graph optimization. In: Proc. of the 2016 AAAI Conf. on Artificial Intelligence. Phoenix: AAAI, 2016. 1302–1308. [doi: 10.1609/aaai.v30i1.10168]
    [41] Li ZC, Yang Y, Liu J, Zhou XF, Lu HQ. Unsupervised feature selection using nonnegative spectral analysis. In: Proc. of the 2021 AAAI Conf. on Artificial Intelligence. Toronto: AAAI, 2021. 1026–1032. [doi: 10.1609/aaai.v26i1.8289]
    [42] 刘建伟, 崔立鹏, 刘泽宇, 罗雄麟. 正则化稀疏模型. 计算机学报, 2015, 38(7): 1307–1325.
    Liu JW, Cui LP, Liu ZY, Luo XL. Survey on the regularized sparse models. Chinese Journal of Computers, 2015, 38(7): 1307–1325 (in Chinese with English abstract).
    [43] Li XP, Wang YD, Ruiz R. A survey on sparse learning models for feature selection. IEEE Trans. on Cybernetics, 2022, 52(3): 1642–1660.
    [44] Shi H, Li Y, Han YH, Hu QH. Cluster structure preserving unsupervised feature selection for multi-view tasks. Neurocomputing, 2016, 175: 686–697.
    [45] Wangila KW, Gao K, Zhu PF, Hu QH, Zhang CQ. Mixed sparsity regularized multi-view unsupervised feature selection. In: Proc. of the 2017 IEEE Int’l Conf. on Image Processing. Beijing: IEEE, 2017. 1930–1934. [doi: 10.1109/ICIP.2017.8296618]
    [46] Huang YY, Shen ZX, Cai YX, Yi XW, Wang DJ, Lv FM, Li TR. C2IMUFS: Complementary and consensus learning-based incomplete multi-view unsupervised feature selection. IEEE Trans. on Knowledge and Data Engineering, 2023, 35(10): 10681–10694.
    [47] Liu XW, Wang L, Zhang J, Yin JP, Liu H. Global and local structure preservation for feature selection. IEEE Trans. on Neural Networks and Learning Systems, 2014, 25(6): 1083–1095.
    [48] Zhou N, Xu YY, Cheng H, Fang J, Pedrycz W. Global and local structure preserving sparse subspace learning: An iterative approach to unsupervised feature selection. Pattern Recognition, 2016, 53: 87–101.
    [49] Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323–2326.
    [50] Saul KL, Roweis ST. Think globally, fit locally: Unsupervised learning of low dimensional manifolds. The Journal of Machine Learning Research, 2003, 4: 119–155.
    [51] He XF, Cai D, Yan SC, Zhang HJ. Neighborhood preserving embedding. In: Proc. of the 2005 IEEE Int’l Conf. on Computer Vision. Beijing: IEEE, 2005. 1208–1213. [doi: 10.1109/ICCV.2005.167]
    [52] Cai D, Zhang CY, He XF. Unsupervised feature selection for multi-cluster data. In: Proc. of the 16th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. Washington: ACM, 2010. 333–342. [doi: 10.1145/1835804.1835848]
    [53] Liu HF, Mao HY, Fu Y. Robust multi-view feature selection. In: Proc. of the 16th IEEE Int’l Conf. on Data Mining. Barcelona: IEEE, 2016. 281–290. [doi: 10.1109/ICDM.2016.0039]
    [54] Tang C, Chen JJ, Liu XW, Li MM, Wang PC, Wang MH, Lu P. Consensus learning guided multi-view unsupervised feature selection. Knowledge-based Systems, 2018, 160: 49–60.
    [55] Liu Y, Zhang CQ, Zhu PF, Hu QH. Generalized multi-view unsupervised feature selection. In: Proc. of the 27th Int’l Conf. on Artificial Neural Networks and Machine Learning. Rhodes: Springer, 2018. 469–478. [doi: 10.1007/978-3-030-01421-6_45]
    [56] Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Proc. of the 14th Int’l Conf. on Neural Information Processing Systems: Natural and Synthetic. Vancouver: ACM, 2001. 585–591. [doi: 10.5555/2980539.2980616]
    [57] He XF, Niyogi P. Locality preserving projections. In: Proc. of the 16th Int’l Conf. on Neural Information Processing Systems. Whistler: ACM, 2004. 153–160. [doi: 10.5555/2981345.2981365]
    [58] 王卫卫, 李小平, 冯象初, 王斯琪. 稀疏子空间聚类综述. 自动化学报, 2015, 41(8): 1373–1384.
    Wang WW, Li XP, Feng XC, Wang SQ. A survey on sparse subspace clustering. Acta Automatica Sinica, 2015, 41(8): 1373–1384 (in Chinese with English abstract).
    [59] Lee DD, Seung HS. Algorithms for non-negative matrix factorization. In: Proc. of the 13th Int’l Conf. on Neural Information Processing Systems. Denver: ACM, 2000. 535–541. [doi: 10.5555/3008751.3008829]
    [60] Von Luxburg U. A tutorial on spectral clustering. Statistics and Computing, 2007, 17(4): 395–416.
    [61] Gretton A, Bousquet O, Smola A, Schölkopf B. Measuring statistical dependence with Hilbert-Schmidt norms. In: Proc. of the 16th Int’l Conf. on Algorithmic Learning Theory. Singapore: Springer, 2005. 63–77. [doi: 10.1007/11564089_7]
    [62] Wang ZF, Salehi B, Gritsenko A, Chowdhury K, Ioannidis S, Dy J. Open-world class discovery with kernel networks. In: Proc. of the 2020 Int’l Conf. on Data Mining. Sorrento: IEEE, 2020. 631–640. [doi: 10.1109/ICDM50108.2020.00072]
    [63] Bach FR, Jordan MI. Learning spectral clustering. In: Proc. of the 16th Int’l Conf. on Neural Information Processing Systems. Whistler: ACM, 2003. 305–312. [doi: 10.5555/2981345.2981384]
    [64] Nie FP, Li J, Li XL. Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification. In: Proc. of the 25th Int’l Joint Conf. on Artificial Intelligence. New York: ACM, 2016. 1881–1887.
    [65] Xu YY, Yin Y, Wang J, Wei JM, Liu J, Yao LN, Zhang WJ. Unsupervised cross-view feature selection on incomplete data. Knowledge-based Systems, 2021, 234: 107595.
    [66] Nie FP, Wang XQ, Jordan M, Huang H. The constrained laplacian rank algorithm for graph-based clustering. In: Proc. of the 2016 AAAI Conf. on Artificial Intelligence. Phoenix: AAAI, 2016. 1969–1976. [doi: 10.1609/aaai.v30i1.10302]
    [67] Pang YW, Zhou B, Nie FP. Simultaneously learning neighborship and projection matrix for supervised dimensionality reduction. IEEE Trans. on Neural Networks and Learning Systems, 2019, 30(9): 2779–2793.
    [68] Wan Y, Sun SZ, Zeng C. Adaptive similarity embedding for unsupervised multi-view feature selection. IEEE Trans. on Knowledge and Data Engineering, 2021, 33(10): 3338–3350.
    [69] Tang C, Zheng X, Liu XW, Zhang W, Zhang J, Xiong J, Wang LZ. Cross-view locality preserved diversity and consensus learning for multi-view unsupervised feature selection. IEEE Trans. on Knowledge and Data Engineering, 2022, 34(10): 4705–4716.
    [70] Nie FP, Cai GH, Li XL. Multi-view clustering and semi-supervised classification with adaptive neighbours. In: Proc. of the 2017 AAAI Conf. on Artificial Intelligence. San Francisco: AAAI, 2017. 2408–2414. [doi: 10.1609/aaai.v31i1.10909]
    [71] Dong X, Zhu L, Song XM, Li JJ, Cheng ZY. Adaptive collaborative similarity learning for unsupervised multi-view feature selection. In: Proc. of the 27th Int’l Joint Conf. on Artificial Intelligence. Stockholm: ACM, 2018. 2064–2070. [doi: 10.5555/3304889.3304946]
    [72] Nie FP, Wang XQ, Huang H. Clustering and projected clustering with adaptive neighbors. In: Proc. of the 20th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. New York: ACM, 2014. 977–986. [doi: 10.1145/2623330.2623726]
    [73] 刘欣宇, 韩晓红, 宋可. 基于自适应相似性的无监督多视图特征选择. 计算机工程与设计, 2021, 42(11): 3158–3163.
    Liu XY, Han XH, Song K. Unsupervised multi-view feature selection based on adaptive similarity. Computer Engineering and Design, 2021, 42(11): 3158–3163 (in Chinese with English abstract).
    [74] Du L, Lv XL. Consensus graph weighting via trace ratio criterion for multi-view unsupervised feature selection. In: Proc. of the 2019 Int’l Conf. on Data Mining Workshops. Beijing: IEEE, 2019. 615–619. [doi: 10.1109/ICDMW.2019.00093]
    [75] Sun SZ, Wan Y, Zeng C. Multi-view embedding with adaptive shared output and similarity for unsupervised feature selection. Knowledge-based Systems, 2019, 165: 40–52.
    [76] Yu SP, Yu K, Tresp V, Kriegel HP. Multi-output regularized feature projection. IEEE Trans. on Knowledge and Data Engineering, 2006, 18(12): 1600–1613.
    [77] Zhou T, Zhang CQ, Peng X, Bhaskar H, Yang J. Dual shared-specific multiview subspace clustering. IEEE Trans. on Cybernetics, 2020, 50(8): 3517–3530.
    [78] Zhang H, Wu DY, Nie FP, Wang R, Li XL. Multilevel projections with adaptive neighbor graph for unsupervised multi-view feature selection. Information Fusion, 2021, 70: 129–140.
    [79] Wang MH, Wang Q, Hong DF, Roy SK, Chanussot J. Learning tensor low-rank representation for hyperspectral anomaly detection. IEEE Trans. on Cybernetics, 2023, 53(1): 679–691.
    [80] Xia W, Gao QX, Wang QQ, Gao XB. Tensor completion-based incomplete multiview clustering. IEEE Trans. on Cybernetics, 2022, 52(12): 13635–13644.
    [81] Yuan HL, Li JY, Liang Y, Tang YY. Multi-view unsupervised feature selection with tensor low-rank minimization. Neurocomputing, 2022, 487: 75–85.
    [82] Xu R, Wunsch D. Survey of clustering algorithms. IEEE Trans. on Neural Networks, 2005, 16(3): 645–678.
    [83] Xu YM, Wang CD, Lai JH. Weighted multi-view clustering with feature selection. Pattern Recognition, 2016, 53: 25–35.
    [84] Wen J, Zhang Z, Fei LK, Zhang B, Xu Y, Zhang Z, Li JX. A survey on incomplete multiview clustering. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2023, 53(2): 1136–1149. [doi: 10.1109/TSMC.2022.3192635]
    [85] Liu YB, Liao BB, Han YH. Discriminative multi-view feature selection and fusion. In: Proc. of the 2015 IEEE Int’l Conf. on Multimedia and Expo. Turin: IEEE, 2015. 1–6. [doi: 10.1109/ICME.2015.7177432]
    [86] Cai X, Nie FP, Huang H. Multi-view K-means clustering on big data. In: Proc. of the 23rd Int’l Joint Conf. on Artificial Intelligence. Beijing: ACM, 2013. 2598–2604. [doi: 10.5555/2540128.2540503]
    [87] Bai XP, Zhu L, Liang C, Li JJ, Nie XS, Chang XJ. Multi-view feature selection via nonnegative structured graph learning. Neurocomputing, 2020, 387: 110–122.
    [88] Zhang YS, Wang XX, Cai ZH, Zhou YC, Philip SY. Tensor-based unsupervised multi-view feature selection for image recognition. In: Proc. of the 2021 IEEE Int’l Conf. on Multimedia and Expo. Shenzhen: IEEE, 2021. 1–6. [doi: 10.1109/ICME51207.2021.9428428]
    [89] Liang C, Wang LZ, Liu L, Zhang HX, Guo F. Multi-view unsupervised feature selection with tensor robust principal component analysis and consensus graph learning. Pattern Recognition, 2023, 141: 109632.
    [90] Hu ML, Chen SC. One-pass incomplete multi-view clustering. In: Proc. of the 2019 AAAI Conf. on Artificial Intelligence. Honolulu: AAAI, 2019. 3838–3845. [doi: 10.1609/aaai.v33i01.33013838]
    [91] Wang SH, Tang JL, Liu H. Embedded unsupervised feature selection. In: Proc. of the 2015 AAAI Conf. on Artificial Intelligence. Austin: AAAI, 2015. 470–476. [doi: 10.1609/aaai.v29i1.9211]
    [92] Cao ZW, Xie XJ, Sun FX, Qian JB. Consensus cluster structure guided multi-view unsupervised feature selection. Knowledge-based Systems, 2023, 271: 110578.
    [93] Tang C, Zhu XZ, Liu XW, Wang LZ. Cross-view local structure preserved diversity and consensus learning for multi-view unsupervised feature selection. In: Proc. of the 2019 AAAI Conf. on Artificial Intelligence. Honolulu: AAAI, 2019. 5101–5108.
    [94] 孙艳歌. 概念漂移数据流分类算法研究 [博士学位论文]. 北京: 北京交通大学, 2019. [doi: 10.26944/d.cnki.gbfju.2019.000738]
    Sun YG. Research on classification for data streams with concept drift [Ph.D. Thesis]. Beijing: Beijing Jiaotong University, 2019 (in Chinese with English abstract). [doi: 10.26944/d.cnki.gbfju.2019.000738]
    [95] 李培培. 数据流中概念漂移检测与分类方法研究 [博士学位论文]. 合肥: 合肥工业大学, 2012. [doi: 10.7666/d.Y2299134]
    Li PP. Concept drifting detection and classification on data streams [Ph.D. Thesis]. Hefei: Hefei University of Technology, 2012 (in Chinese with English abstract). [doi: 10.7666/d.Y2299134]
    [96] 翟婷婷, 高阳, 朱俊武. 面向流数据分类的在线学习综述. 软件学报, 2020, 31(4): 912–931. http://www.jos.org.cn/1000-9825/5916.htm
    Zhai TT, Gao Y, Zhu JW. Survey of online learning algorithms for streaming data classification. Ruan Jian Xue Bao/Journal of Software, 2020, 31(4): 912–931 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5916.htm
    [97] Ahmad S, Lavin A, Purdy S, Agha Z. Unsupervised real-time anomaly detection for streaming data. Neurocomputing, 2017, 262: 134–147.
    [98] Shao WX, He LF, Lu CT, Wei XK, Philip SY. Online unsupervised multi-view feature selection. In: Proc. of the 16th IEEE Int’l Conf. on Data Mining. Barcelona: IEEE, 2016. 1203–1208. [doi: 10.1109/ICDM.2016.0160]
    [99] Huang YY, Guo KJ, Yi XW, Li Z, Li TR. Incremental unsupervised feature selection for dynamic incomplete multi-view data. Information Fusion, 2023, 96: 312–327.
    [100] Wang H, Yang Y, Liu B. GMC: Graph-based multi-view clustering. IEEE Trans. on Knowledge and Data Engineering, 2020, 32(6): 1116–1129.
    [101] Chen MS, Huang L, Wang CD, Huang D. Multi-view clustering in latent embedding space. In: Proc. of the 2020 AAAI Conf. on Artificial Intelligence. New York: AAAI, 2020. 3513–3520. [doi: 10.1609/aaai.v34i04.5756]
    [102] Gui J, Li P. Multi-view feature selection for heterogeneous face recognition. In: Proc. of the 2018 IEEE Int’l Conf. on Data Mining. Singapore: IEEE, 2018. 983-988. [doi: 10.1109/ICDM.2018.00122]
    [103] Yang ZW, Wang HY, Han YH, Zhu XL. Discriminative multi-task multi-view feature selection and fusion for multimedia analysis. Multimedia Tools and Applications, 2018, 77(3): 3431–3453.
    [104] Huang XY, Nie XL. Multi-view feature selection for PolSAR image classification via l2,1 sparsity regularization and manifold regularization. IEEE Trans. on Image Processing, 2021, 30: 8607–8618.
    [105] Acharya S, Cui LZ, Pan Y. A consensus multi-view multi-objective gene selection approach for improved sample classification. BMC Bioinformatics, 2020, 21(13): 386.
    [106] Acharya S, Cui LZ, Pan Y. Multi-view feature selection for identifying gene markers: A diversified biological data driven approach. BMC Bioinformatics, 2020, 21(18): 483.
    [107] Wang LZ, Liang C, Dong WJ, Chen WL. Multi-view unsupervised feature selection via consensus guided low-rank tensor learning. In: Proc. of the 2022 IEEE Int’l Conf. on Bioinformatics and Biomedicine. Las Vegas: IEEE, 2022. 575-580.
    [108] El-Manzalawy Y, Hsieh TY, Shivakumar M, Kim D, Honavar V. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data. BMC Medical Genomics, 2018, 11(3): 71.
    [109] Hu PJ, Li X, Lu N, Dong KQ, Bai XL, Liang TB, Li JS. Prediction of new-onset diabetes after pancreatectomy with subspace clustering based multi-view feature selection. IEEE Journal of Biomedical and Health Informatics, 2023, 27(3): 1588–1599.
    [110] Li JY, Wu L, Wen GQ, Li Z. Exclusive feature selection and multi-view learning for Alzheimer’s disease. Journal of Visual Communication and Image Representation, 2019, 64: 102605.
    [111] 凤维明, 尹一通. 分布式采样理论综述. 软件学报, 2022, 33(10): 3673–3699. http://www.jos.org.cn/1000-9825/6372.htm
    Feng WM, Yin YT. Survey on theory of distributed sampling. Ruan Jian Xue Bao/Journal of Software, 2022, 33(10): 3673–3699 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6372.htm
    [112] 张文静, 王备战, 张志宏. 基于图的特征选择算法综述. 安徽大学学报(自然科学版), 2017, 41(1): 10–20.
    Zhang WJ, Wang BZ, Zhang ZH. A survey of feature selection algorithms based on graph. Journal of Anhui University (Natural Sciences), 2017, 41(1): 10–20 (in Chinese with English abstract).
    [113] Huang HN, Zhou GX, Liang NY, Zhao QB, Xie SL. Diverse deep matrix factorization with hypergraph regularization for multi-view data representation. IEEE/CAA Journal of Automatica Sinica, 2023, 10(11): 2154–2167.
    [114] Wang R, Wang PL, Wu DY, Sun ZS, Nie FP, Li XL. Multi-view and multi-order structured graph learning. IEEE Trans. on Neural Networks and Learning Systems, 2023: 1–12.
    [115] Shao ZZ, Xu YJ, Wei W, Wang F, Zhang Z, Zhu FD. Heterogeneous graph neural network with multi-view representation learning. IEEE Trans. on Knowledge and Data Engineering, 2023, 35(11): 11476–11488.
    [116] Huang ZY, Zhou JT, Zhu HY, Zhang CQ, Lv JC, Peng X. Deep spectral representation learning from multi-view data. IEEE Trans. on Image Processing, 2021, 30: 5352–5362.
    [117] Lu RK, Liu JW, Zuo X. Attentive multi-view deep subspace clustering net. Neurocomputing, 2021, 435: 186–196.
    [118] Wen J, Zhang Z, Zhang Z, Zhu L, Fei LK, Zhang B, Xu Y. Unified tensor framework for incomplete multi-view clustering and missing-view inferring. In: Proc. of the 2021 AAAI Conf. on Artificial Intelligence. AAAI, 2021. 10273–10281.
    [119] Yang JH, Fu LL, Chen C, Dai HN, Zheng ZB. Cross-view graph matching for incomplete multi-view clustering. Neurocomputing, 2023, 515: 79–88.
    [120] Zubaroğlu A, Atalay V. Data stream clustering: A review. Artificial Intelligence Review, 2021, 54(2): 1201–1236.
    [121] Chen J, Yang SX, Wang Z. Multi-view representation learning for data stream clustering. Information Sciences, 2022, 613: 731–746.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴建生,李艳兰,黄冲,闵卫东.无监督多视图特征选择研究进展.软件学报,2025,36(2):886-914

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-11
  • 最后修改日期:2023-10-22
  • 在线发布日期: 2024-08-14
  • 出版日期: 2025-02-06
文章二维码
您是第19789626位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号