面向分布式超导量子计算架构的量子线路映射
作者:
中图分类号:

TP303

基金项目:

国家自然科学基金(62072259); 江苏省自然科学基金(BK20221411); 宿迁市科技计划面上项目(H202117)


Quantum Circuit Mapping for Distributed Superconducting Quantum Computing Architecture
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    近年来, 超导量子互连技术的研究取得了重要进展, 这为构建分布式超导量子计算架构提供了有效途径. 分布式超导架构在网络拓扑、量子比特连通性、以及量子态传输协议等方面对量子线路的执行施加了严格约束. 为在分布式架构上调度和执行量子线路, 需要通过专门的映射工序对量子线路进行适配底层架构的变换, 并将变换后的线路交由网络中多个QPU (quantum processing unit)协同运行. 分布式量子线路映射需向原始线路插入辅助的量子态移动操作, 这些操作(尤其是QPU间量子态移动操作)具有较高的错误率. 因此, 减少映射所需的量子态移动操作数对于保证分布式计算的成功率至关重要. 基于超导量子互连技术和超导QPU的技术特征构建一种抽象的分布式量子计算模型, 并基于该抽象模型提出一种分布式量子线路映射方法, 该方法由量子比特分布式映射和量子态路由两个核心模块组成, 前者以量子态路由开销为代价函数, 通过局部寻优和模拟退火相结合的策略生成近最优的初始映射; 后者根据量子门执行的不同情形构建多个启发式量子态路由策略, 并通过灵活应用这些策略最小化插入的量子态移动操作数. 所构建的分布式抽象模型屏蔽了底层架构中和量子线路映射无关的物理细节, 这使得基于该模型的映射方法可适用于一类分布式超导架构而非某个特定架构. 另外, 所提方法可作为辅助工具参与分布式网络拓扑结构的设计和评价. 实验结果表明, 所提算法可以有效降低映射所需的QPU内量子态移动操作(即SWAP门)数和QPU间量子态移动操作(即ST门)数. 相较已有算法, 在所有基准线路上平均减少69.69%的SWAP门和85.88%的ST门, 且时间开销和已有算法接近.

    Abstract:

    In recent years, research on the interconnect technology of superconducting qubits has made important progress, providing an effective way to build a distributed computing architecture for superconducting quantum computers. The distributed superconducting architecture imposes strict constraints on the execution of quantum circuits in terms of network topology, qubit connectivity, and quantum state transfer protocols. To execute and schedule quantum circuits on a distributed architecture, the circuit mapping process is required to transform the quantum circuits to adapt to the underlying architecture and then to distribute the transformed circuits to multiple QPUs. The distributed circuit mapping process necessitates the insertion of additional quantum operations into the original circuit. Such operations, especially the inter-QPU state transfer operations, are susceptible to noise, leading to high error rates. Therefore, minimizing the number of such additional operations inserted by the mapping process is critical to improving the overall computation success rate. This study constructs an abstract model of distributed quantum computing based on the technical features of the interconnect technology of superconducting qubits and today’s superconducting QPUs. Moreover, this study proposes a distributed quantum circuit mapping approach based on this abstract model. The proposed approach consists of two main components the distributed qubit mapping algorithm and the qubit state routing algorithm. The former formulates the problem of distributing qubits to different QPUs as a combinatorial optimization problem and employs simulated annealing enhanced with local search to find the initial mapping that brings the optimal total routing cost. The latter constructs several heuristic qubit routing rules for different scenarios and integrates them systematically to minimize the additional operations inserted by the mapping process. The abstract model shields any technical details of the underlying architecture that are irrelevant to circuit mapping, which makes the mapping method applicable to a class of such networks rather than a specific one. Moreover, the approach proposed in this study can be used as an ancillary tool to design and evaluate the network topology of distributed systems. The experimental results show that, compared to the baseline approach, the proposed approach reduces the number of intra-chip operations (SWAP gates) and inter-chip operations (ST gates) by 69.69% and 85.88% on average, respectively, with a time overhead similar to existing algorithms.

    参考文献
    [1] Krantz P, Kjaergaard M, Yan F, Orlando TP, Gustavsson S, Oliver WD. A quantum engineer’s guide to superconducting qubits. Applied Physics Reviews, 2019, 6(2): 021318.
    [2] Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574(7779): 505–510.
    [3] Wu YL, Bao WS, Cao SR, et al. Strong quantum computational advantage using a superconducting quantum processor. Physical Review Letters, 2021, 127(18): 180501.
    [4] Zhu QL, Cao SR, Chen FS, et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Science Bulletin, 2022, 67(3): 240–245.
    [5] Huang HY, Broughton M, Cotler J, Chen ST, Li J, Mohseni M, Neven H, Babbush R, Kueng R, Preskill J, Mcclean JR. Quantum advantage in learning from experiments. Science, 2022, 376(6598): 1182–1186.
    [6] Brink M, Chow JM, Hertzberg J, Magesan E, Rosenblatt S. Device challenges for near term superconducting quantum processors: Frequency collisions. In: Proc. of the 2018 IEEE Int’l Electron Devices Meeting. San Francisco: IEEE, 2018. 611–613.
    [7] Cuomo D, Caleffi M, Cacciapuoti AS. Towards a distributed quantum computing ecosystem. IET Quantum Communication, 2020, 1(1): 3–8.
    [8] Rodrigo S, Abadal S, Alarcón E, Almudever CG. Will quantum computers scale without inter-chip comms? A structured design exploration to the monolithic vs distributed architectures quest. In: Proc. of the 2020 Conf. on Design of Circuits and Integrated Systems. Segovia: IEEE, 2020. 1–6. [doi: 10.1109/DCIS51330.2020.9268630]
    [9] Kurpiers P, Magnard P, Walter T, Royer B, Pechal M, Heinsoo J, Salathé Y, Akin A, Storz S, Besse JC, Gasparinetti S, Blais A, Wallraff A. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature, 2018, 558(7709): 264–267.
    [10] Magnard P, Storz S, Kurpiers P, Sch?r J, Marxer F, Lütolf J, Walter T, Besse JC, Gabureac M, Reuer K, Akin A, Royer B, Blais A, Wallraff A. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Physical Review Letters, 2020, 125(26): 260502.
    [11] Leung N, Lu Y, Chakram S, Naik RK, Earnest N, Ma R, Jacobs K, Cleland AN, Schuster DI. Deterministic bidirectional communication and remote entanglement generation between superconducting qubits. npj Quantum Information, 2019, 5(1): 18.
    [12] Zhong YP, Chang HS, Bienfait A, Dumur é, Chou MH, Conner CR, Grebel J, Povey RG, Yan HX, Schuster DI, Cleland AN. Deterministic multi-qubit entanglement in a quantum network. Nature, 2021, 590(7847): 571–575.
    [13] Yan HX, Zhong YP, Chang HS, Bienfait A, Chou MH, Conner CR, Dumur é, Grebel J, Povey RG, Cleland AN. Entanglement purification and protection in a superconducting quantum network. Physical Review Letters, 2022, 128(8): 080504.
    [14] Gold A, Paquette JP, Stockklauser A, Reagor MJ, Alam MS, Bestwick A, Didier N, Nersisyan A, Oruc F, Razavi A, Scharmann B, Sete EA, Sur B, Venturelli D, Winkleblack CJ, Wudarski F, Harburn M, Rigetti C. Entanglement across separate silicon dies in a modular superconducting qubit device. npj Quantum Information, 2021, 7(1): 142.
    [15] Conner CR, Bienfait A, Chang HS, Chou MH, Dumur é, Grebel J, Peairs GA, Povey RG, Yan H, Zhong YP, Cleland AN. Superconducting qubits in a flip-chip architecture. Applied Physics Letters, 2021, 118(23): 232602.
    [16] Kosen S, Li HX, Rommel M, et al. Building blocks of a flip-chip integrated superconducting quantum processor. Quantum Science and Technology, 2022, 7(3): 035018.
    [17] Siraichi MY, Santos VFD, Collange C, Pereira FMQ. Qubit allocation. In: Proc. of the 2018 Int’l Symp. on Code Generation and Optimization. Vienna: ACM, 2018. 113–125. [doi: 10.1145/3168822]
    [18] Botea A, Kishimoto A, Marinescu R. On the complexity of quantum circuit compilation. In: Proc. of the 11th Int’l Symp. on Combinatorial Search. Stockholm: AAAI, 2018. 138–142. [doi: 10.1609/socs.v9i1.18463]
    [19] Davarzani Z, Zomorodi-Moghadam M, Houshmand M, Nouri-Baygi M. A dynamic programming approach for distributing quantum circuits by bipartite graphs. Quantum Information Processing, 2020, 19(10): 360.
    [20] Andrés-Martinez P, Heunen C. Automated distribution of quantum circuits via hypergraph partitioning. Physical Review A, 2019, 100(3): 032308.
    [21] Houshmand M, Mohammadi Z, Zomorodi-Moghadam M, Houshmand M. An evolutionary approach to optimizing teleportation cost in distributed quantum computation. Int’l Journal of Theoretical Physics, 2020, 59(4): 1315–1329.
    [22] Daei O, Navi K, Zomorodi M. Improving the teleportation cost in distributed quantum circuits based on commuting of gates. Int’l Journal of Theoretical Physics, 2021, 60(9): 3494–3513.
    [23] Nikahd E, Mohammadzadeh N, Sedighi M, Zamani MS. Automated window-based partitioning of quantum circuits. Physica Scripta, 2021, 96(3): 035102.
    [24] Ghodsollahee I, Davarzani Z, Zomorodi M, P?awiak P, Houshmand M, Houshmand M. Connectivity matrix model of quantum circuits and its application to distributed quantum circuit optimization. Quantum Information Processing, 2021, 20(7): 235.
    [25] Wehner S, Elkouss D, Hanson R. Quantum Internet: A vision for the road ahead. Science, 2018, 362(6412): eaam9288.
    [26] Pirandola S, Eisert J, Weedbrook C, Furusawa A, Braunstein SL. Advances in quantum teleportation. Nature Photonics, 2015, 9(10): 641–652.
    [27] LaRacuente N, Smith KN, Imany P, Silverman KL, Chong FT. Modeling short-range microwave networks to scale superconducting quantum computation. arXiv:2201.08825, 2023.
    [28] Chow JM. Quantum intranet. IET Quantum Communication, 2021, 2(1): 26–27.
    [29] Bardin J. Beyond-classical computing using superconducting quantum processors. In: Proc. of the 2022 IEEE Int’l Solid-state Circuits Conf. San Francisco: IEEE, 2022. 422–424. [doi: 10.1109/ISSCC42614.2022.9731635]
    [30] Zulehner A, Paler A, Wille R. An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems, 2019, 38(7): 1226–1236.
    [31] Li GS, Ding YF, Xie Y. Tackling the qubit mapping problem for NISQ-era quantum devices. In: Proc. of the 24th Int’l Conf. on Architectural Support for Programming Languages and Operating Systems. Providence: ACM, 2019. 1001–1014.
    [32] Nishio S, Pan YL, Satoh T, Amano H, van Meter R. Extracting success from IBM’s 20-qubit machines using error-aware compilation. ACM Journal on Emerging Technologies in Computing Systems, 2020, 16(3): 32.
    [33] Niu SY, Suau A, Staffelbach G, Todri-Sanial A. A hardware-aware heuristic for the qubit mapping problem in the NISQ era. IEEE Trans. on Quantum Engineering, 2020, 1: 3101614.
    [34] Zhu PC, Cheng XY, Guan ZJ. An exact qubit allocation approach for NISQ architectures. Quantum Information Processing, 2020, 19(11): 391.
    [35] Zhou XZ, Feng Y, Li SJ. A Monte Carlo tree search framework for quantum circuit transformation. In: Proc. of the 39th Int’l Conf. on Computer-aided Design. San Diego: ACM, 2020. 138. [doi: 10.1145/3400302.3415621]
    [36] Li SJ, Zhou XZ, Feng Y. Qubit mapping based on subgraph isomorphism and filtered depth-limited search. IEEE Trans. on Computers, 2021, 70(11): 1777–1788.
    [37] Zhu PC, Guan ZJ, Cheng XY. A dynamic look-ahead heuristic for the qubit mapping problem of NISQ computers. IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems, 2020, 39(12): 4721–4735.
    [38] Zhu PC, Feng SG, Guan ZJ. An iterated local search methodology for the qubit mapping problem. IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems, 2022, 41(8): 2587–2597.
    [39] 窦星磊, 刘磊, 陈岳涛. 面向超导量子计算机的程序映射技术研究. 计算机研究与发展, 2021, 58(9): 1856–1874.
    Dou XL, Liu L, Chen YT. An investigation into quantum program mapping on superconducting quantum computers. Journal of Computer Research and Development, 2021, 58(9): 1856–1874 (in Chinese with English abstract).
    [40] Zhou XZ, Feng Y, Li SJ. Supervised learning enhanced quantum circuit transformation. IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems, 2023, 42(3): 437–447.
    [41] Pozzi MG, Herbert SJ, Sengupta A, Mullins RD. Using reinforcement learning to perform qubit routing in quantum compilers. ACM Trans. on Quantum Computing, 2022, 3(2): 10.
    [42] Wille R, van Meter R, Naveh Y. IBM’s Qiskit tool chain: Working with and developing for real quantum computers. In: Proc. of the 2019 Design, Automation & Test in Europe Conf. & Exhibition. Florence: IEEE, 2019. 1234–1240. [doi: 10.23919/DATE.2019.8715261]
    [43] Boykin PO, Mor T, Pulver M, Roychowdhury V, Vatan F. A new universal and fault-tolerant quantum basis. Information Processing Letters, 2000, 75(3): 101–107.
    [44] Chou KS, Blumoff JZ, Wang C, Reinhold PC, Axline CJ, Gao YY, Frunzio L, Devoret MH, Jiang L, Schoelkopf RJ. Deterministic teleportation of a quantum gate between two logical qubits. Nature, 2018, 561(7723): 368–373.
    [45] Delahaye D, Chaimatanan S, Mongeau M. Simulated annealing: From basics to applications. In: Gendreau M, Potvin JY, eds. Handbook of Metaheuristics. Cham: Springer, 2019. 1–35. [doi: 10.1007/978-3-319-91086-4_1]
    相似文献
    引证文献
引用本文

朱鹏程,卫丽华,冯世光,周祥臻,郑盛根,管致锦.面向分布式超导量子计算架构的量子线路映射.软件学报,,():1-20

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-08-29
  • 最后修改日期:2023-09-01
  • 在线发布日期: 2024-09-04
文章二维码
您是第19799526位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号