运动感知的移动游戏帧率调整算法
作者:
中图分类号:

TP391

基金项目:

国家自然科学基金(61906090, U20B2064, 61773208); 江苏省自然科学基金(BK20191287, BK20170809); 中央高校基本科研业务费专项资金(30920021131); 中国博士后科学基金(2018M632304)


Motion-aware Frame Rate Adjustment Algorithm for Mobile Game
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着移动设备的广泛普及, 其图形处理器的性能也逐渐增强. 为了满足用户对卓越体验的不断追求, 移动设备屏幕分辨率和刷新率每年都在不断提升. 与此同时, 移动游戏中的可编程绘制流水线也变得日益复杂, 这导致游戏应用成为移动设备功耗的主要来源. 研究了移动游戏中的绘制流水线, 提出一种运动感知的绘制帧率调整方法, 以在节能模式下保证绘制质量. 与以往仅考虑历史帧绘制误差的预测模型不同, 该方法通过建立摄像机位姿和帧间绘制误差的非线性关系模型, 通过未来帧新的摄像机位姿预测其绘制误差, 实现更为精确的帧率调整策略. 此外, 该方法还包括一个轻量级的场景识别模块, 可根据玩家所处特定场景有针对性地调整误差阈值, 从而采用不同程度的帧率调整策略. 在定量对比上, 相比只考虑历史帧误差的预测模型, 构建的模型在游戏帧序列上的预测准确性提高30%以上. 同时, 在用户实验的定性对比上, 相同跳帧比例下该方法能够得到用户体验更好的绘制效果. 提出的算法融合了历史帧误差和摄像机位姿变化信息, 能够预测出更准确的未来帧误差. 算法结合预测结果和场景识别结果, 实现了更好的动态帧率调整效果.

    Abstract:

    As mobile devices are widely used, the performance of their graphics processors has increasingly improved. To meet users’ continuous pursuit of excellent experience, the screen resolution and refresh rate of mobile devices are constantly increasing every year. At the same time, the programmable shading pipeline in mobile games is becoming more complex, which leads to game applications becoming the main source of power consumption for mobile devices. This work studies the rendering pipeline in mobile games and proposes a motion-aware rendering frame rate adjustment method to ensure rendering quality in power-saving mode. Unlike previous prediction models that only consider rendering errors of historical frames, this method builds a nonlinear model between camera pose and inter-frame rendering error and predicts error based on the new frame’s camera pose, thus achieving more accurate frame rate adjustment strategies. In addition, the method also includes a lightweight scene recognition module that can adjust the error threshold according to the specific scene where the player is located, thereby adopting different degrees of frame rate adjustment strategies. Quantitatively compared with the prediction model that only considers historical frame errors, the proposed model improves the prediction accuracy on game frame sequences by more than 30%. At the same time, in the qualitative comparison of user experiments, under the same frame-skipping ratio, the proposed algorithm can achieve higher rendering quality and better user experience. The algorithm integrates historical frame errors and camera information to predict more accurate future frame errors. It also combines prediction and scene recognition results to achieve better dynamic frame rate adjustment performance.

    参考文献
    [1] Wang R, Yang XJ, Yuan YZ, Chen W, Bala K, Bao HJ. Automatic shader simplification using surface signal approximation. ACM Trans. on Graphics (TOG), 2014, 33(6): 226.
    [2] Liang YZ, Song Q, Wang R, Huo YC, Bao HJ. Automatic mesh and shader level of detail. IEEE Trans. on Visualization and Computer Graphics, 2023, 29(10): 4284–4295.
    [3] Garland M, Heckbert PS. Surface simplification using quadric error metrics. In: Proc. of the 24th Annual Conf. on Computer Graphics and Interactive Techniques. New York: ACM Press/Addison-Wesley Publishing Co., 1997. 209–216. [doi: 10.1145/258734.258849]
    [4] Yang L, Zhdan D, Kilgariff E, Lum EB, Zhang YB, Johnson M, Rydgård H. 2019. Visually lossless content and motion adaptive shading in games. Proc. of the ACM on Computer Graphics and Interactive Techniques, 2019, 2(1): 6. [doi: 10.1145/3320287]
    [5] Denes G, Jindal A, Mikhailiuk A, Mantiuk RK. A perceptual model of motion quality for rendering with adaptive refresh-rate and resolution. ACM Trans. on Graphics, 2020, 39(4): 133.
    [6] Jindal A, Wolski K, Myszkowski K, Mantiuk RK. 2021. Perceptual model for adaptive local shading and refresh rate. ACM Trans. on Graphics, 2021, 40(6): 281.
    [7] Hwang C, Pushp S, Koh C, Yoon J, Liu YX, Choi S, Song J. RAVEN: Perception-aware optimization of power consumption for mobile games. In: Proc. of the 23rd Annual Int’l Conf. on Mobile Computing and Networking. Snowbird: Association for Computing Machinery, 2017. 422–434. [doi: 10.1145/3117811.3117841]
    [8] Chang YC, Chen WM, Hsiu PC, Lin YY, Kuo TW. LSIM: Ultra lightweight similarity measurement for mobile graphics applications. In: Proc. of the 56th Annual Design Automation Conf. Las Vegas: Association for Computing Machinery, 2019. 25.
    [9] Nvidia. G-sync high dynamic range. 2017. https://images.nvidia.com/content/gsync/pdf/g-sync-hdr-whitepaper_v01.pdf
    [10] Wang R, Yu BW, Marco J, Hu TL, Gutierrez D, Bao HJ. Real-time rendering on a power budget. ACM Trans. on Graphics, 2016, 35(4): 111.
    [11] Zhang YJ, Ortin M, Arellano V, Wang R, Gutierrez D, Bao HJ. On-the-fly power-aware rendering. Computer Graphics Forum, 2018, 37(4): 155–166.
    [12] Zhang YJ, Wang R, Huo YC, Hua W, Bao HJ. PowerNet: Learning-based real-time power-budget rendering. IEEE Trans. on Visualization and Computer Graphics, 2022, 28(10): 3486–3498.
    [13] NVIDIA. NVIDIA turing GPU architecture. 2018. https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
    [14] Swaroop Bhonde. Turing variable rate shading in VRWorks. 2018. https://devblogs.nvidia.com/turing-variable-rate-shading-vrworks/
    [15] Vatjus-Anttila JM, Koskela T, Hickey S. Power consumption model of a mobile GPU based on rendering complexity. In: Proc. of the 7th Int’l Conf. on Next Generation Mobile Apps, Services and Technologies. Prague: IEEE, 2013. 210–215.
    [16] Choi J, Park H, Paek J, Balan RK, Ko J. LpGL: Low-power graphics library for mobile AR headsets. In: Proc. of the 17th Annual Int’l Conf. on Mobile Systems, Applications, and Services. Seoul: Association for Computing Machinery, 2019. 155–167.
    [17] Kim D, Jung N, Chon Y, Cha H. Content-centric energy management of mobile displays. IEEE Trans. on Mobile Computing, 2016, 15(8): 1925–1938.
    [18] Woo M, Neider J, Davis T, Shreiner, D. OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 1.2. Reading: Addison-Wesley Longman Publishing Co. Inc., 1999.
    [19] Wang LL, Shi XH, Liu Y. Foveated rendering: A state-of-the-art survey. Computational Visual Media, 2023, 9(2): 195–228.
    [20] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: From error visibility to structural similarity. IEEE Trans. on Image Processing, 2004, 13(4): 600–612.
    [21] Gallant SI. Perceptron-based learning algorithms. IEEE Trans. on Neural Networks, 1990, 1(2): 179–191
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

梁宇智,霍宇驰,王锐.运动感知的移动游戏帧率调整算法.软件学报,2025,36(2):874-885

复制
分享
文章指标
  • 点击次数:250
  • 下载次数: 1647
  • HTML阅读次数: 161
  • 引用次数: 0
历史
  • 收稿日期:2023-09-27
  • 最后修改日期:2023-11-07
  • 在线发布日期: 2024-04-29
文章二维码
您是第19702743位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号