意图驱动的网络流量分布式测量方法
作者:
中图分类号:

TP393

基金项目:

国家自然科学基金(62072091)


Intent-driven Distributed Network Traffic Measurement
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    可编程交换机的网络流量测量技术凭借其特性可以处理高速网络流量, 在灵活性、实时性等方面均有巨大的优势. 然而, 由于需要使用复杂的P4语言配置交换机的内部逻辑, 测量任务部署复杂且易错. 此外, 测量准确度往往受限于交换机内部可用的测量资源. 详细研究基于意图的网络及网络流量测量技术, 提出一种意图驱动的网络流量分布式测量方法. 首先, 设计基于测量意图原语的意图表示形式, 构建意图编译器将抽象意图表示转译为可执行的P4代码. 其次, 提出网络流量分布式测量方法, 使用多台交换机的资源以分布式的方式协同完成一个测量任务, 以大流测量为例介绍测量资源动态分配及计数器配置算法. 最后, 实验结果表明所提出的方法可行并且具有一定的优越性.

    Abstract:

    The network traffic measurement technology of programmable switches is capable of handling high-speed network traffic and offers significant advantages in terms of flexibility and real-time processing. However, due to the necessity of configuring the internal logic of switches using the complex P4 programming language, the deployment of measurement tasks becomes intricate and error-prone. Furthermore, measurement accuracy is often constrained by the available measurement resources within the switch of measurement tasks. This study proposes a detailed exploration of intent-based networking and network traffic measurement technology, introducing an intent-driven network traffic distributed measurement method. Firstly, an intent representation format based on measurement intent primitives is designed, and an intent compiler is developed to translate abstract intent representations into executable P4 code. Secondly, a network traffic distributed measurement approach is introduced, utilizing the resources of multiple switches to collaboratively complete a measurement task in a distributed manner. The dynamic allocation of measurement resources and counter-configuration algorithms are exemplified with heavy-hitter measurements. Finally, experimental results demonstrate the feasibility and certain advantages of the proposed method.

    参考文献
    [1] 戴冕, 程光, 周余阳. 软件定义网络的测量方法研究. 软件学报, 2019, 30(6): 1853–1874. http://www.jos.org.cn/1000-9825/5832.htm
    Dai M, Cheng G, Zhou YY. Survey on measurement methods in software-defined networking. Ruan Jian Xue Bao/Journal of Software, 2019, 30(6): 1853–1874 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5832.htm
    [2] 胡治国, 田春岐, 杜亮, 关晓蔷, 曹峰. IP网络性能测量研究现状和进展. 软件学报, 2017, 28(1): 105–134. http://www.jos.org.cn/1000-9825/5127.htm
    Hu ZG, Tian CQ, Du L, Guan XQ, Cao F. Current research and future perspective on IP network performance measurement. Ruan Jian Xue Bao/Journal of Software, 2017, 28(1): 105–134 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5127.htm
    [3] Yu ML, Jose L, Miao R. Software defined traffic measurement with OpenSketch. In: Proc. of the 10th USENIX Conf. on Networked Systems Design and Implementation. Lombard: USENIX Association, 2013. 29–42. [doi: 10.5555/2482626.2482631]
    [4] Bosshart P, Daly D, Gibb G, Izzard M, McKeown N, Rexford J, Schlesinger C, Talayco D, Vahdat A, Varghese G, Walker D. P4: Programming protocol-independent packet processors. ACM SIGCOMM Computer Communication Review, 2014, 44(3): 87–95.
    [5] Qiu K, Yuan J, Zhao J, Wang X, Secci S, Fu XM. FastRule: Efficient flow entry updates for TCAM-based OpenFlow switches. IEEE Journal on Selected Areas in Communications, 2019, 37(3): 484–498.
    [6] Laffranchini P, Rodrigues L, Canini M, Krishnamurthy B. Measurements as first-class artifacts. In: Proc. of the 2009 IEEE Conf. on Computer Communications. Paris: IEEE, 2019. 415–423. [doi: 10.1109/INFOCOM.2019.8737383]
    [7] 李福亮, 范广宇, 王兴伟, 刘树成, 谢坤, 孙琼. 基于意图的网络研究综述. 软件学报, 2020, 31(8): 2574–2587. http://www.jos.org.cn/1000-9825/6088.htm
    Li FL, Fan GY, Wang XW, Liu SC, Xie K, Sun Q. State-of-the-art survey of intent-based networking. Ruan Jian Xue Bao/Journal of Software, 2020, 31(8): 2574–2587 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6088.htm
    [8] Pang L, Yang CG, Chen DY, Song YB, Guizani M. A survey on intent-driven networks. IEEE Access, 2020, 8: 22862–22873.
    [9] Kiran M, Pouyoul E, Mercian A, Tierney B, Guok C, Monga I. Enabling intent to configure scientific networks for high performance demands. Future Generation Computer Systems, 2018, 79: 205–214.
    [10] Scheid EJ, Machado CC, Franco MF, Dos Santos RL, Pfitscher RP, Schaeffer-Filho AE, Granville LZ. INSpIRE: Integrated NFV-based intent refinement environment. In: Proc. of the 2017 IFIP/IEEE Symp. on Integrated Network and Service Management. Lisbon: IEEE, 2017. 186–194. [doi: 10.23919/INM.2017.7987279]
    [11] Tian BC, Zhang XY, Zhai EN, Liu HH, Ye QB, Wang CS, Wu X, Ji ZM, Sang YH, Zhang M, Yu D, Tian C, Zheng HT, Zhao BY. Safely and automatically updating in-network ACL configurations with intent language. In: Proc. of the 2019 ACM Special Interest Group on Data Communication. Beijing: ACM, 2019. 214–226. [doi: 10.1145/3341302.3342088]
    [12] Stoenescu R, Popovici M, Negreanu L, Raiciu C. SymNet: Scalable symbolic execution for modern networks. In: Proc. of the 2016 ACM SIGCOMM Conf. Florianopolis: ACM, 2016. 314–327. [doi: 10.1145/2934872.2934881]
    [13] Kang JM, Lee J, Nagendra V, Banerjee S. LMS: Label management service for intent-driven cloud management. In: Proc. of the 2017 IFIP/IEEE Symp. on Integrated Network and Service Management. Lisbon: IEEE, 2017. 177–185. [doi: 10.23919/INM.2017.7987278]
    [14] Huang Q, Jin X, Lee PPC, Li RH, Tang L, Chen YC, Zhang G. SketchVisor: Robust network measurement for software packet processing. In: Proc. of the 2017 Conf. of the ACM Special Interest Group on Data Communication. Los Angeles: ACM, 2017. 113–126. [doi: 10.1145/3098822.3098831]
    [15] Huang Q, Lee PPC, Bao YG. SketchLearn: Relieving user burdens in approximate measurement with automated statistical inference. In: Proc. of the 2018 Conf. of the ACM Special Interest Group on Data Communication. Budapest: ACM, 2018. 576–590.
    [16] Yang T, Jiang J, Liu P, Huang Q, Gong JZ, Zhou Y, Miao R, Li XM, Uhlig S. Elastic Sketch: Adaptive and fast network-wide measurements. In: Proc. of the 2018 Conf. of the ACM Special Interest Group on Data Communication. Budapest: ACM, 2018. 561–575. [doi: 10.1145/3230543.3230544]
    [17] Gupta A, Harrison R, Canini M, Feamster N, Rexford J, Willinger W. Sonata: Query-driven streaming network telemetry. In: Proc. of the 2018 Conf. of the ACM Special Interest Group on Data Communication. Budapest: ACM, 2018. 357–371.
    [18] Moshref M, Yu ML, Govindan R, Vahdat A. DREAM: Dynamic resource allocation for software-defined measurement. In: Proc. of the 2014 ACM Conf. on SIGCOMM. Chicago: ACM, 2014. 419–430. [doi: 10.1145/2619239.2626291]
    [19] Moshref M, Yu ML, Govindan R, Vahdat A. SCREAM: Sketch resource allocation for software-defined measurement. In: Proc. of the 11th ACM Conf. on Emerging Networking Experiments and Technologies. Heidelberg: ACM, 2015. 14. [doi: 10.1145/2716281.2836099]
    [20] Wang WT, Yang YJ, Wang E. A distributed hierarchical heavy hitter detection method in software-defined networking. IEEE Access, 2019, 7: 55367–55381.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张宇鑫,李福亮,元禹博,王兴伟.意图驱动的网络流量分布式测量方法.软件学报,2025,36(2):732-746

复制
分享
文章指标
  • 点击次数:183
  • 下载次数: 1617
  • HTML阅读次数: 154
  • 引用次数: 0
历史
  • 收稿日期:2023-09-19
  • 最后修改日期:2023-11-14
  • 在线发布日期: 2024-07-03
文章二维码
您是第19921019位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号