基于负数据库的隐私保护图神经网络推荐系统
CSTR:
作者:
作者单位:

作者简介:

赵冬冬(1989-), 男, 博士, 副教授, CCF专业会员, 主要研究领域为隐私保护, 虹膜识别, 数据挖掘;彭思芸(1998-), 女, 硕士生, 主要研究领域为机器学习, 隐私保护;徐虎(1998-), 男, 硕士生, 主要研究领域为机器学习, 隐私保护;周俊伟(1986-), 男, 博士, 教授, 博士生导师, CCF专业会员, 主要研究领域为算机视觉, 安全保护.

通讯作者:

周俊伟, E-mail: junweizhou@msn.com

中图分类号:

基金项目:

国家自然科学基金(61806151); 湖北省重点研发计划(2022BAA050);海南省重点研发计划(ZDYF2021GXJS014); 重庆市自然科学基金(cstc2021jcyj-msxmX0002)


Privacy-preserving Graph Neural Network Recommendation System Based on Negative Database
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    图数据是一种特殊的数据形式, 由节点和边组成. 在这种数据中, 实体被建模为节点, 节点之间可能存在边, 表示实体之间的关系. 通过分析和挖掘这些数据, 人们可以获得很多有价值的信息. 因此, 对于图中各个节点来说, 它也带来了隐私信息泄露的风险. 为了解决这个问题, 提出了一种基于负数据库(NDB)的图数据发布方法. 该方法将图数据的结构特征转换为负数据库的编码形式,基于此, 设计出一种扰动图(NDB-Graph)的生成方法. 由于NDB是一种保护隐私的技术, 不显式存储原始数据且难以逆转, 故发布的图数据能确保原始图数据的安全. 此外, 由于图神经网络在图数据中关系特征处理方面的高效性,被广泛应用于对图数据的各种任务处理建模, 例如推荐系统, 还提出了一种基于NDB技术的图神经网络的推荐系统来保护每个用户的图数据隐私. 基于Karate和Facebook数据集上的实验表明, 与PBCN发布方法相比, 所提方法在大多数情况下表现更优秀. 例如: 在Facebook数据集上, 度分布最小的L1误差仅为6, 比同隐私等级下的PBCN方法低约2.6%; 最坏情况约为1 400, 比同隐私等级下的PBCN方法低约46.5%. 在基于LightGCN的协同过滤实验中也表明, 所提出的隐私保护方法具有较高的精度.

    Abstract:

    Graph data is a kind of data composed of nodes and edges, which models the entities as the nodes, nodes may be connected by edges, and edge indicates a relationship between entities. By analyzing and mining these data, a lot of valuable information can be revealed. Meanwhile, it also brings risks of privacy information disclosure for every entity in the graph. To address this issue, a graph data publishing method is proposed based on the negative database (NDB). This method transforms the structural characteristics of the graph data into the encoding format of a negative database. Based on this, a generation method for perturbed graphs (NDB-Graph) is designed. Since NDB is a privacy-preserving technique that does not explicitly store the original data and is difficult to reverse, the published graph data ensures the security of the original graph data. Besides, due to the high efficiency of graph neural network in relation feature processing in graph data, it is widely used in various task processing modeling on graph data, such as recommendation system. a graph neural network recommendation system is also proposed based on NDB technology to protect the privacy of graph data for each user. Compared with publishing method PBCN, the proposed method outperforms it in most cases in experiments on the Karate and Facebook datasets. For example, on Facebook datasets, the smallest L1-error of degree distribution is only 6, which is about 2.6% lower than the PBCN method under the same privacy level, the worst case is about 1 400, which is about 46.5% lower than the PBCN method under the same privacy level. The experiment of collaborative filtering based on LightGCN also demonstrates that the proposed privacy protection method has high precision.

    参考文献
    相似文献
    引证文献
引用本文

赵冬冬,徐虎,彭思芸,周俊伟.基于负数据库的隐私保护图神经网络推荐系统.软件学报,2024,35(8):3698-3720

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-11
  • 最后修改日期:2023-10-30
  • 录用日期:
  • 在线发布日期: 2024-01-05
  • 出版日期: 2024-08-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号