面向云边端协同的多模态数据建模技术及其应用
作者:
基金项目:

国家自然科学基金(62232005,U1866602);国家重点研发计划(2021YFB3300502)


Multimodal Data Modeling Technology and Its application for Cloud-edge-device Collaboration
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    云边端协同架构中数据类型多样,各级存储资源与计算资源存在差异,给数据管理带来新的挑战.现有数据模型或者数据模型的简单叠加,都难以同时满足云边端中多模态数据管理和协同管理需求.因此,研究面向云边端协同的多模态数据建模技术成为重要问题.其核心在于,如何高效地从云边端三层架构中得到满足应用所需的查询结果.从云边端三层数据的数据类型出发,提出了面向云边端协同的多模态数据建模技术,给出了基于元组的多模态数据模型定义,设计了6种基类,解决多模态数据统一表征困难的问题;提出了云边端协同查询的基本数据操作体系,以满足云边端业务场景的查询需求;给出了多模态数据模型的完整性约束,为查询优化奠定了理论基础.最后,给出了面向云边端协同多模态数据模型的示范应用,并从数据存储时间、存储空间和查询时间这3个方面对所提出的数据模型存储方法进行了验证.实验结果表明,所提方案能够有效地表示云边端协同架构中的多模态数据.

    Abstract:

    In the cloud-edge-device collaborative architecture, data types are diverse, and there are differences in storage resources and computing resources at all levels, which bring new challenges to data management. The existing data models or simple superposition of data models are difficult to meet the requirements of multimodal data management and collaborative management in the cloud-edge-device. Therefore, research on multimodal data modeling technology for cloud-edge-device collaboration has become an important issue. The core is how to efficiently obtain the query results that meet the needs of the application from the three-tier architecture of cloud-edge-device. Starting from the data types of the three-layer data of cloud-edge-device, this study proposes a multimodal data modeling technology for cloud-edge-device collaboration, gives the definition of multimodal data model based on tuples, and designs six base classes to solve the problem of unified representation of multimodal data. The basic data operation architecture of cloud-edge-device collaborative query is also proposed to meet the query requirements of cloud-edge-device business scenarios. The integrity constraints of the multimodal data model are given, which lays a theoretical foundation for query optimization. Finally, a demonstration application of the multimodal data model for cloud edge-device collaboration was given, and the proposed data model storage method was verified from three aspects of data storage time, storage space and query time. The experimental results show that the proposed scheme can effectively represent the multimodal data in the cloud-edge-device collaborative architecture.

    参考文献
    [1] Hu Y. When the inflection point arrives, edge computing goes from 1.0 to 2.0. 2021(in Chinese). https://www.ccidcom.com/yaowen/20201228/Un7zMy9mYNIWMTpzO180ffiw29vok.html
    [2] Yu H, Liang ZT, Yan YC. Review on multi-source and multi-modal data fusion and integration. Information Studies:Theory & Application, 2020, 43(11):169-178. (in Chinese with English abstract).[doi:10.16353/j.cnki.1000-7490.2020.11.027]
    [3] Sun YY, Jia ZT, Zhu HY. Survey of multimodal deep learning. Computer Engineering and Applications, 2020, 56(21):1-10(in Chinese with English abstract).[doi:10.3778/j.issn.1002-8331.2002-0342]
    [4] Date CJ. A Guide to the SQL Standard. 2nd ed., Addison-Wesley, 1989.
    [5] Bray JPT, Sperberg-McQueen CM, Yergeau F. Extensible Markup Language (xml) 1.0(Third Edition). W3C Recommendation, 2004. http://www.w3.org/TR/REC-xml/
    [6] van Rest O, Hong SP, Kim JH, et al. PGQL:A property graph query language. In:Proc. of the 4th Int'l Workshop on Graph Data Management Experience and Systems (GRADES). 2016. 1-6.[doi:10.1145/2960414.2960421]
    [7] Gueni B, Abdessalem T, Cautis B, et al. Pruning nested XQuery queries. In:Proc. of the Conf. on Information and Knowledge Management (CIKM). 2008. 541-550.
    [8] Wang X, Zou L, Wang CK, Peng P, Feng ZY. Research on knowledge graph data management:A survey. Ruan Jian Xue Bao/Journal of Software, 2019, 30(7):2139-2174(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5841.htm[doi:10.13328/j.cnki.jos.005841]
    [9] Koolen M, Kamps J. The importance of anchor text for ad hoc search revisited. In:Proc. of the 33rd Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR 2010). New York:Association for Computing Machinery, 2010. 122-129.[doi:10.1145/1835449.1835472]
    [10] Chen FS, Zhang PF, Yu CC, et al. Path-based continuous spatial keyword queries. Complexity, 2022, 2022:Article ID 4091245.[doi:10.1155/2022/4091245]
    [11] Fujiwara Y, Nakatsuji M, Shiokawa H, et al. Efficient ad-hoc search for personalized PageRank. In:Proc. of the 2013 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2013). New York:Association for Computing Machinery, 2013. 445-456.[doi:10.1145/2463676.2463717]
    [12] Chen J, Liu YQ, Fang Y, et al. Axiomatically regularized pre-training for ad hoc search. In:Proc. of the 45th Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR 2022). New York:Association for Computing Machinery, 2022. 1524-1534.[doi:10.1145/3477495.3531943]
    [13] Dai ZY, Callan J. Context-aware document term weighting for ad-hoc search. In:Proc. of the Web Conf. 2020(WWW 2020). New York:Association for Computing Machinery, 2020. 1897-1907.[doi:10.1145/3366423.3380258]
    [14] Rencis E. On keyword-based ad-hoc querying of hospital data stored in semistar data ontologies. Procedia Computer Science, 2018, 138:27-32.[doi:10.1016/j.procs.2018.10.005]
    [15] Wang X, Shi PR, Li JQ, et al. Privacy-preserving mechanisms of continuous location queries based on LBS:A comprehensive survey. In:Proc. of the 27th Int'l Conf. on Automation and Computing (ICAC). 2022. 1-6.[doi:10.1109/ICAC55051.2022. 9911102]
    [16] Deligiannakis A, Kotidis Y, Roussopoulos N. Hierarchical in-network data aggregation with quality guarantees. In:Proc. of the Extending Database Technology (EDBT). 2004. 658-675.
    [17] Madden S, Franklin MJ, Hellerstein JM, et al. TinyDB:An acquisitional query processing system for sensor networks. ACM Trans. on Database Systems, 2005, 30(1):122-173.[doi:10.1145/1061318.1061322]
    [18] Silberstein A, Yang J. Many-to-many aggregation for sensor networks. In:Proc. of the IEEE 23rd Int'l Conf. on Data Engineering (ICDE). 2007. 986-995.[doi:10.1109/ICDE. 2007.368957]
    [19] Tang XY, Xu JL. Extending network lifetime for precision-constrained data aggregation in wireless sensor networks. In:Proc. of the IEEE 25th Int'l Conf. on Computer Communications (INFOCOM). 2006. 1-12.[doi:10.1109/INFOCOM.2006.149]
    附中文参考文献:
    [1] 胡媛. 迎接拐点到来, 边缘计算从1.0到2.0. 2021. https://www.ccidcom.com/yaowen/20201228/Un7zMy9mYNIWMTpzO180ffiw29vok.htm
    [2] 余辉,梁镇涛, 鄢宇晨. 多来源多模态数据融合与集成研究进展. 情报理论与实践, 2020, 43(11):169-178.
    [3] 孙影影, 贾振堂, 朱昊宇. 多模态深度学习综述. 计算机工程与应用, 2020, 56(21):1-10.[doi:10.3778/j.issn.1002-8331.2002- 0342]
    [8] 王鑫,邹磊, 王朝坤, 彭鹏, 冯志勇. 知识图谱数据管理研究综述. 软件学报, 2019, 30(7):2139-2174. http://www.jos.org.cn/1000-9825/5841.htm[doi:10.13328/j.cnki.jos.005841]
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

崔双双,吴限,王宏志,吴昊.面向云边端协同的多模态数据建模技术及其应用.软件学报,2024,35(3):1154-1172

复制
分享
文章指标
  • 点击次数:1115
  • 下载次数: 5029
  • HTML阅读次数: 1575
  • 引用次数: 0
历史
  • 收稿日期:2023-07-16
  • 最后修改日期:2023-09-05
  • 在线发布日期: 2023-11-08
  • 出版日期: 2024-03-06
文章二维码
您是第19727511位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号