基于最优传输理论的深度半监督学习伪标签生成算法
CSTR:
作者:
作者单位:

作者简介:

翟德明(1984-), 女, 博士, 副教授, 博士生导师, 主要研究领域为机器学习, 数据挖掘及其在计算机视觉和图像处理中的应用. ;沈斯娴(1998-), 女, 硕士生, 主要研究领域为深度学习, 鲁棒学习. ;周雄(1996-), 男, 博士生, 主要研究领域为图像处理, 计算机视觉, 鲁棒机器学习. ;江俊君(1986-), 男, 博士, 教授, 博士生导师, CCF高级会员, 主要研究领域为计算机视觉, 图像处理, 深度学习. ;刘贤明(1983-), 男, 博士, 教授, 博士生导师, CCF专业会员, 主要研究领域为可信人工智能, 计算成像, 生物医学信号压缩, 3D信号处理和分析. ;季向阳(1976-), 男, 博士, 教授, 博士生导师, 主要研究领域为工智能, 计算成像.

通讯作者:

翟德明, Email: zhaideming@hit.edu.cn

中图分类号:

TP18

基金项目:

国家自然科学基金(6207115, 61922027)


Pseudo-labeling Algorithm Based on Optimal Transport for Deep Semi-supervised Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前, 深度学习广泛应用于各个领域并取得了优异的表现, 这通常需要大量标注数据的支持, 而大量标注数据的获取往往意味着高昂的成本与苛刻的应用条件. 因此, 随着深度学习的发展, 如何在实际场景下突破数据限制, 成为目前重要的研究目标, 而半监督学习正是其中一大研究方向. 半监督学习通过利用大量的未标记数据辅助少量的标记数据进行学习, 很好地减轻了深度学习的数据需求压力. 伪标签生成方法是当前半监督学习的重要组成部分, 所生成的伪标签质量的优劣会很大程度影响半监督学习的最终效果. 聚焦半监督学习中的伪标签生成问题, 提出基于最优传输理论的伪标签生成方法. 所提方法在将有标签信息作为生成过程引导的同时引入类别均衡约束, 在此基础上将半监督学习的伪标签生成过程转换成最优传输优化问题, 给出新的求解伪标签生成问题的形式. 为求解该优化问题, 引入Sinkhorn-Knopp算法进行近似快速求解, 避免不可计算问题. 所提伪标签生成方法作为半监督学习中的独立过程可结合当前一致性正则等半监督学习技巧构成完整的半监督学习过程. 最终, 在CIFAR-10、SVHN、MNIST、FashionMNIST这4大公共经典图像分类数据集上进行实验, 验证方法的有效性. 实验结果显示, 所提方法与当前先进的半监督学习方法相比, 均取得更优异的结果, 尤其是在标签情况较少的情况下提升显著.

    Abstract:

    Deep learning has been widely employed in many fields and yields excellent performance. However, this often requires the support of large amounts of labeled data, which usually means high costs and harsh application conditions. Therefore, with the development of deep learning, how to break through data limitations in practical scenarios has become an important research problem. Specifically, as one of the most important research directions, semi-supervised learning greatly relieves the data requirement pressure of deep learning by conducting learning with the assistance of abundant unlabeled data and a small number of labeled data. The pseudo-labeling method plays a significant role in semi-supervised learning, and the quality of its generated pseudo labels will influence the final results of semi-supervised learning. Focusing on pseudo-labeling in semi-supervised learning, this study proposes the pseudo-labeling method based on optimal transport theory, which introduces the pseudo-labeling procedure constraint with labeled data as generation process guidance. On this basis, the pseudo-labeling procedure is converted to the optimization problem of optimal transport, which offers a new form for solving pseudo-labeling. Meanwhile, to solve this problem, this study introduces the Sinkhorn-Knopp algorithm for approximate fast solutions to avoid the heavy computation burden. As an independent module, the proposed method can be combined with other semi-supervised learning tricks such as consistency regularization for complete semi-supervised learning. Finally, this study conducts experiments on four classic public image classification datasets of CIFAR-10, SVHN, MNIST, and FashionMNIST to verify the effectiveness of the proposed method. The experimental results show that compared with the state-of-the-art semi-supervised learning methods, this method yields better performance, especially under fewer labeled data.

    参考文献
    相似文献
    引证文献
引用本文

翟德明,沈斯娴,周雄,江俊君,刘贤明,季向阳.基于最优传输理论的深度半监督学习伪标签生成算法.软件学报,2024,35(11):5196-5209

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-03
  • 最后修改日期:2023-05-29
  • 录用日期:
  • 在线发布日期: 2024-04-03
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号