面向物联网设备移动与通信行为的建模及验证
作者:
作者简介:

刘靖宇(1996-), 男, 硕士生, CCF学生会员, 主要研究领域为形式化技术. ;李晅松(1985-), 男, 博士, 副教授, CCF专业会员, 主要研究领域为软件方法学, 形式化技术, 普适计算技术, 物联网安全. ;陈芝菲(1990-), 女, 博士, 副教授, CCF专业会员, 主要研究领域为程序分析, 软件测试, 软件维护. ;叶海波(1987-), 男, 博士, 副教授, CCF专业会员, 主要研究领域为普适计算, 物联网. ;宋巍(1981-), 男, 博士, 教授, 博士生导师, CCF杰出会员, 主要研究领域为软件工程与方法学, 形式化方法, 服务计算.

通讯作者:

李晅松, E-mail: lixs@njust.edu.cn

中图分类号:

TP311

基金项目:

国家自然科学基金(61702263, 61761136003); CCF-华为创新研究计划(CCF-HuaweiFM2021004)


Modeling and Verification for Mobile and Communication Behaviors of IoT Devices
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    物联网设备的使用范围正在不断扩张. 模型检测是提升这类设备可靠性和安全性的有效手段, 但常用的模型检测方法不能很好地刻画这类设备常见的跨空间移动和通信行为. 为此, 提出一种面向物联网设备移动与通信行为的建模及验证方法, 以实现对这类设备时空相关性质的验证. 通过将推拉动作和全局通信机制融入ambient calculus, 提出全局通信移动环境演算(ACGC)并给出了ACGC对ambient logic的模型检测算法; 在此基础上, 提出描述物联网设备移动和通信行为的移动通信建模语言(MLMC), 并给出将MLMC描述转换为ACGC模型的方法; 进一步地, 实现模型检测工具ACGCCk以验证物联网设备的性质是否得到满足, 并通过一些优化加快检测速度; 最后, 通过案例研究和实验分析阐明所提方法的有效性.

    Abstract:

    The utilization range of Internet of Things (IoT) devices is expanding. Model checking is an effective approach to improve the reliability and security of such devices. However, the commonly adopted model checking methods cannot well describe the cross-space movement and communication behavior common in such devices. To this end, this study proposes a modeling and verification method for the mobile and communication behavior of IoT devices to verify their spatio-temporal properties. Additionally, push/pull action and global communication mechanism are integrated into ambient calculus to propose the ambient calculus with global communication (ACGC) and provide a model checking algorithm for ACGC against the ambient logic. Then, the modeling language for mobility and communication (MLMC) is put forward to describe mobile and communication behavior of IoT devices. Additionally, a method to convert the MLMC-based description into an ACGC model is given. Furthermore, a model checking tool ACGCCk is implemented to verify whether the properties of IoT devices are satisfied. Meanwhile, some optimizations are conducted to accelerate the checking. Finally, the effectiveness of the proposed method is demonstrated by case study and experimental analysis.

    参考文献
    [1] IoT Analytics. IoT 2021 in review: The 10 most relevant IoT developments of the year. 2021. https://iot-analytics.com/iot-2021-in-review/
    [2] Pnueli A. The temporal logic of programs. In: Proc. of the 18th Annual Symp. on Foundations of Computer Science. Providence: IEEE, 1977. 46–57.
    [3] Clarke EM, Emerson EA. Design and synthesis of synchronization skeletons using branching time temporal logic. In: Proc. of the Workshop on Logic of Programs. Yorktown Heights: Springer, 1981. 52–71.
    [4] Cardelli L, Gordon AD. Anytime, anywhere: Modal logics for mobile ambients. In: Proc. of the 27th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages. Boston: ACM, 2000. 365–377.
    [5] Cardelli L, Gordon AD. Mobile ambients. In: Proc. of the 1st Int’l Conf. on Foundations of Software Science and Computation Structure. Lisbon: Springer, 1998. 140–155.
    [6] Levi F, Sangiorgi D. Mobile safe ambients. ACM Trans. on Programming Languages and Systems, 2003, 25(1): 1–69.
    [7] Bugliesi M, Castagna G, Crafa S. Boxed ambients. In: Proc. of the 4th Int’l Symp. on Theoretical Aspects of Computer Software. Sendai: Springer, 2001. 38–63.
    [8] Phillips I, Vigliotti MG. On reduction semantics for the push and pull ambient calculus. In: Baeza-Yates R, Montanari U, Santoro N, eds. Foundations of Information Technology in the Era of Network and Mobile Computing. Boston: Springer, 2002. 550–562.
    [9] Gul N. A calculus of mobility and communication for ubiquitous computing [Ph.D. Thesis]. Leicester: University of Leicester, 2015.
    [10] Milner R. Communicating and Mobile Systems: the π-Calculus. Cambridge: Cambridge University Press, 1999. 75–156.
    [11] Charatonik W, Dal Zilio S, Gordon AD, Mukhopadhyay S, Talbot JM. Model checking mobile ambients. Theoretical Computer Science, 2003, 308(1–3): 277–331.
    [12] Nielson F, Nielson HR, Sagiv M. A kleene analysis of mobile ambients. In: Proc. of the 9th European Symp. on Programming. Berlin: Springer, 2000. 305–319.
    [13] 刘熙旺, 李良, 郭雅萍, 章飞. 电梯及机器人乘梯的方法和装置. CN108163653B, 2020-08-18.
    Liu XW, Li L, Guo YP, Zhang F. Method and device for elevator and robot riding. CN108163653B. 2020-08-18 (in Chinese).
    [14] Ichinose R, Takeuchi I, Teramoto T. Elevator system that autonomous mobile robot takes together with person: US, 8958910B2, 2015-02-17.
    [15] Lin HM. Predicate μ-calculus for mobile ambients. Journal of Computer Science and Technology, 2005, 20(1): 95–104.
    [16] 江华. 界程演算模型检测 [博士学位论文]. 贵阳: 贵州大学, 2008.
    Jiang H. Model checking for mobile ambients [Ph.D. Thesis]. Guiyang: Guizhou University, 2008 (in Chinese with English abstract).
    [17] 林荣德. 移动界程演算及模型检测应用的关键问题研究 [博士学位论文]. 广州: 华南理工大学, 2010.
    Lin RD. Research on key issues of mobile ambients and model checking applications [Ph.D. Thesis]. Guangzhou: South China University of Technology, 2010 (in Chinese with English abstract).
    [18] Coronato A, De Pietro G. Tools for the rapid prototyping of provably correct ambient intelligence applications. IEEE Trans. on Software Engineering, 2012, 38(4): 975–991.
    [19] Kato T, Miyai A, Higuchi M. IDE for the ambient calculus in distributed environments. In: Proc. of the 2014 Int’l Conf. on Industrial Automation, Information and Communications Technology. Bali: IEEE, 2014. 83–89. [doi: 10.1109/IAICT.2014.6922104]
    [20] 李晅松, 陶先平, 吕建, 宋巍. 面向动作的上下文感知应用的规约与运行时验证. 软件学报, 2017, 28(5): 1167–1182. http://www.jos.org.cn/1000-9825/5215.htm
    Li XS, Tao XP, Lü J, Song W. Specification and runtime verification for activity-oriented context-aware applications. Ruan Jian Xue Bao/Journal of Software, 2017, 28(5): 1167–1182 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5215.htm
    [21] Zhang LF, He WJ, Martinez J, Brackenbury N, Lu S, Ur B. AutoTap: Synthesizing and repairing trigger-action programs using LTL properties. In: Proc. of the 41st IEEE/ACM Int’l Conf. on Software Engineering. Montreal: IEEE, 2019. 281–291.
    [22] Wang Q, Datta P, Yang W, Liu S, Bates A, Gunter CA. Charting the attack surface of trigger-action IoT platforms. In: Proc. of the 2019 ACM SIGSAC Conf. on Computer and Communications Security. London: ACM, 2019. 1439–1453. [doi: 10.1145/3319535.3345662]
    [23] Celik ZB, McDaniel PD, Tan G. Soteria: Automated IoT safety and security analysis. In: Proc. of the 2018 USENIX Annual Technical Conf. Boston: USENIX Association, 2018. 147–158.
    [24] Bu L, Xiong W, Liang CJM, Han S, Zhang DM, Lin S, Li XD. Systematically ensuring the confidence of real-time home automation IoT systems. ACM Trans. on Cyber-physical Systems, 2018, 2(3): 22.
    [25] Ranganathan A, Campbell RH. Provably correct pervasive computing environments. In: Proc. of the 6th IEEE Int’l Conf. on Pervasive Computing and Communications. Hong Kong: IEEE, 2008. 160–169. [doi: 10.1109/PERCOM.2008.116]
    [26] Li XS, Tao XP, Lu J. Programming method and formalization for activity-oriented context-aware applications. In: Proc. of the 12th Int’l Conf. on Ubiquitous Intelligence and Computing and the 12th Int’l Conf. on Autonomic and Trusted Computing and the 15th IEEE Int’l Conf. on Scalable Computing and Communications and its Associated Workshops. Beijing: IEEE, 2015. 174–181.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘靖宇,李晅松,陈芝菲,叶海波,宋巍.面向物联网设备移动与通信行为的建模及验证.软件学报,2024,35(11):4993-5015

复制
分享
文章指标
  • 点击次数:496
  • 下载次数: 1980
  • HTML阅读次数: 495
  • 引用次数: 0
历史
  • 收稿日期:2022-09-18
  • 最后修改日期:2023-05-07
  • 在线发布日期: 2024-02-05
  • 出版日期: 2024-11-06
文章二维码
您是第19765662位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号