局部一致性主动学习的源域无关开集域自适应
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

韩忠义,E-mail:hanzhongyicn@gmail.com;尹义龙,E-mail:ylyin@sdu.edu.cn

中图分类号:

基金项目:

国家自然科学基金(62176139); 山东省自然科学基金(ZR2021ZD15)


Local Consistent Active Learning for Source Free Open-set Domian Adaptation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无监督域自适应在解决训练集(源域)和测试集(目标域)分布不一致的问题上已经取得了一定的成功. 在面向低能耗场景和开放动态任务环境时, 在资源约束和开放类别出现的情况下, 现有的无监督域自适应方法面临着严峻的挑战. 源域无关开集域自适应(SF-ODA)旨在将源域模型中的知识迁移到开放类出现的无标签目标域, 从而在无源域数据资源的限制下辨别公共类和检测开放类. 现有的源域无关开集域自适应的方法聚焦于设计准确检测开放类别的源域模型或增改模型的结构. 但是, 这些方法不仅需要额外的存储空间和训练开销, 而且在严格的隐私保护场景下难以实现. 提出了一个更加实际的场景: 主动学习的源域无关开集域自适应(ASF-ODA), 目标是基于一个普通训练的源域模型和少量专家标注的有价值的目标域样本来实现鲁棒的迁移. 为了达成此目标, 提出了局部一致性主动学习(LCAL)算法. 首先, 利用目标域中局部特征标签一致的特点, LCAL设计了一种新的主动选择方法: 局部多样性选择, 来挑选更有价值的阈值模糊样本来促进开放类和公共类分离. 接着, LCAL基于信息熵初步筛选出潜在的公共类集合和开放类集合, 并利用第一步得到的主动标注样本对这两个集合进行匹配纠正, 得到两个对应的可信集合. 最后, LCAL引入开集损失和信息最大化损失来进一步促使公共类和开放类分离, 引入交叉熵损失来实现公共类的辨别. 在Office-31、Office-Home和VisDA-C这3个公开的基准数据集上的大量实验表明: 在少量有价值的目标域样本的帮助下, LCAL不仅显著优于现有的源域无关开集域自适应方法, 还大幅度超过了现有的主动学习方法的表现, 在某些迁移任务上可以提升20%.

    Abstract:

    Unsupervised domain adaptation (UDA) has achieved success in solving the problem that the training set (source domain) and the test set (target domain) come from different distributions. In the low energy consumption and open dynamic task environment, with the emergence of resource constraints and public classes, existing UDA methods encounter severe challenges. Source free open-set domain adaptation (SF-ODA) aims to transfer the knowledge from the source model to the unlabeled target domain where public classes appear, thus realizing the identification of common classes and detection of public class without the source data. Existing SF-ODA methods focus on designing source models that accurately detect public class or modifying the model structures. However, they not only require extra storage space and training overhead, but also are difficult to be implemented in the strict privacy scenarios. This study proposes a more practical scenario: Active learning source free open-set domain adaptive adaptation (ASF-ODA), based on a common training source model and a small number of valuable target samples labeled by experts to achieve a robust transfer. A local consistent active learning (LCAL) algorithm is proposed to achieve this objective. First of all, LCAL includes a new proposed active selection method, local diversity selection, to select more valuable samples of target domain and promote the separation of threshold fuzzy samples by taking advantage of the feature local labels in the consistent target domain. Then, based on information entropy, LCAL initially selects possible common class set and public class set, and corrects these two sets with labeled samples obtained in the first step to obtain two corresponding reliable sets. Finally, LCAL introduces open set loss and information maximization loss to further promote the separation of common and public classes, and introduces cross entropy loss to realize the discrimination of common classes. A large number of experiments on three publicly available benchmark datasets, Office-31, Office-Home, and VisDA-C, show that with the help of a small number of valuable target samples, LCAL significantly outperforms the existing active learning methods and SF-ODA methods, with over 20% HOS improvements in some transfer tasks.

    参考文献
    相似文献
    引证文献
引用本文

王帆,韩忠义,苏皖,尹义龙.局部一致性主动学习的源域无关开集域自适应.软件学报,2024,35(4):1651-1666

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-13
  • 最后修改日期:2023-07-07
  • 录用日期:
  • 在线发布日期: 2023-09-11
  • 出版日期: 2024-04-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号