面向开集识别的稳健测试时适应方法
作者:
通讯作者:

李宇峰,E-mail:liyf@nju.edu.cn

基金项目:

科技创新2030—“新一代人工智能”重大项目(2022ZD0114803); 国家自然科学基金(62176118)


Towards Robust Test-time Adaptation Method for Open-set Recognition
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    开集识别旨在研究测试阶段突现未见类别对于机器学习模型的挑战, 以期学习模型既能分类已见类别又可识别/拒绝未见类别, 是确保机器学习模型能够在开放世界中高效稳健部署的重要技术. 既有开集识别技术通常假设已见类别的协变量分布在训练与测试阶段维持不变. 然而在实际场景中, 类别的协变量分布常不断变化. 直接利用既有技术不再奏效, 其性能甚至劣于基线方案. 因此, 亟需研究新型开集识别方法, 使其能不断适应协变量分布偏移, 以期模型在测试阶段既能稳健分类已见类别又可识别未见类别. 将此新问题设置命名为开放世界适应问题(AOW), 并提出了一种开放测试时适应方法(OTA). 该方法基于无标注测试数据优化自适应熵损失与开集熵损失更新模型, 维持对已见类的既有判别能力, 同时增强了识别未见类的能力. 大量实验分析表明, 该方法在多组基准数据集、多组不同协变量偏移程度下均稳健地优于现有先进的开集识别方法.

    Abstract:

    Open-set recognition is an important issue for ensuring the efficient and robust deployment of machine learning models in the open world. It aims to address the challenge of encountering samples from unseen classes that emerge during testing, i.e., to accurately classify the seen classes while identifying and rejecting the unseen ones. Current open-set recognition studies assume that the covariate distribution of the seen classes remains constant during both training and testing. However, in practical scenarios, the covariate distribution is constantly shifting, which can cause previous methods to fail, and their performance may even be worse than the baseline method. Therefore, it is urgent to study novel open-set recognition methods that can adapt to the constantly changing covariate distribution so that they can robustly classify seen categories and identify unseen categories during testing. This novel problem adaptation in the open world (AOW) is named and a test-time adaptation method is proposed for open-set recognition called open-set test-time adaptation (OTA). OTA method only utilizes unlabeled test data to update the model with adaptive entropy loss and open-set entropy loss, maintaining the model’s ability to discriminate seen classes while further enhancing its ability to recognize unseen classes. Comprehensive experiments are conducted on multiple benchmark datasets with different covariate shift levels. The results show that the proposal is robust to covariate shift and demonstrates superior performance compared to many state-of-the-art methods.

    参考文献
    [1] Deng J, Dong W, Socher R, et al. Imagenet:A large-scale hierarchical image database. In:Proc. of the 2009 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 2009. 248-255.[doi:10.1109/CVPR.2009.5206848]
    [2] Reddy DR. Speech recognition by machine:A review. Proc. of the IEEE, 1976, 64(4):501-531.[doi:10.1109/PROC.1976.10158]
    [3] Stahlberg F. Neural machine translation:A review. Journal of Artificial Intelligence Research, 2020, 69:343-418.[doi:10.1613/jair.1.12007]
    [4] Dou W, Wang HM, Jia Y, et al. A recommendation-based peer-to-peer trust model. Ruan Jian Xue Bao/Journal of Software, 2004, 15(4):571-583 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/15/571.htm
    [5] Neal L, Olson M, Fern X, et al. Open set learning with counterfactual images. In:Proc. of the European Conf. on Computer Vision (ECCV). 2018. 613-628.[doi:10.1007/978-3-030-01231-1\_38]
    [6] Zhu PF, Zhang WY, Wang Y, et al. Multi-granularity inter-class correlation based contrastive learning for open set recognition. Ruan Jian Xue Bao/Journal of Software, 2022, 33(4):1156-1169 (in Chinese with English abstract). https://www.jos.org.cn/1000-9825/6468.htm[doi:10.13328/j.cnki. jos.006468]
    [7] Zhou Z, Guo LZ, Cheng ZZ, et al. STEP:Out-of-distribution detection in the presence of limited in-distribution labeled data. In:Advances in Neural Information Processing Systems. 2021. 29168-29180.
    [8] Zhou DW, Yang Y, Zhan DC. Learning to classify with incremental new class. IEEE Trans. on Neural Networks and Learning Systems, 2021, 33(6):2429-2443.[doi:10.1109/TNNLS.2021.3104882]
    [9] Guo LZ, Zhang ZY, Jiang Y, et al. Safe deep semi-supervised learning for unseen-class unlabeled data. In:Proc. of the 37th Int'l Conf. on Machine Learning. 2020. 3897-3906.
    [10] Wong K, Wang S, Ren M, et al. Identifying unknown instances for autonomous driving. In:Proc. of the Conf. on Robot Learning. 2020. 384-393.
    [11] Geng C, Huang S, Chen S. Recent advances in open set recognition:A survey. IEEE Trans on Pattern Analysis and Machine Intelligence, 2020, 43(10):3614-3631.[doi:10.1109/TPAMI.2020.2981604]
    [12] Zhu YN, Li YF. Semi-supervised streaming learning with emerging new labels. In:Proc. of the 34th AAAI Conf. on Artificial Intelligence. 2020. 7015-7022.[doi:10.1609/aaai.v34i04.6186]
    [13] Vaze S, Han K, Vedaldi A, et al. Open-set recognition:A good closed-set classifier is all you need? In:Proc. of the 10th Int'l Conf. on Learning Representations. 2022.
    [14] Bendale A, Boult TE. Towards open set deep networks. In:Proc. of the 2016 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 2016. 1563-1572.[doi:10.1109/CVPR.2016.173]
    [15] Zhou DW, Ye HJ, Zhan DC. Learning placeholders for open-set recognition. In:Proc. of the 2021 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 2021. 4401-4410.[doi:10.1109/CVPR46437.2021.00438]
    [16] Chen G, Peng P, Wang X, et al. Adversarial reciprocal points learning for open set recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2022, 44(11):8065-8081.[doi:10.1109/TPAMI.2021.3106743]
    [17] Sun X, Yang Z, Zhang C, et al. Conditional Gaussian distribution learning for open set recognition. In:Proc. of the 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 2020. 13480-13489.[doi:10.1109/CVPR42600.2020. 01349]
    [18] Geng C, Chen S. Collective decision for open set recognition. IEEE Trans. on Knowledge and Data Engineering, 2020, 34(1):192-204.[doi:10.1109/TKDE.2020.2978199]
    [19] Shao JJ, Guo LZ, Yang XW, et al. LOG:Active model adaptation for label-efficient ood generalization. In:Advances in Neural Information Processing Systems. 2022.
    [20] Guo LZ, Zhou Z, Li YF. RECORD:Resource constrained semi-supervised learning under distribution shift. In:Proc. of the 26th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. 2020. 1636-1644.[doi:10.1145/3394486.3403214]
    [21] Wang D, Shelhamer E, Liu S, et al. Tent:Fully test-time adaptation by entropy minimization. In:Proc. of the 8th Int'l Conf. on Learning Representations. 2020.
    [22] Niu S, Wu J, Zhang Y, et al. Efficient test-time model adaptation without forgetting. In:Proc. of the 39th Int'l Conf. on Machine Learning. 2022. 16888-16905.
    [23] Bartler A, Bühler A, Wiewel F, et al. MT3:Meta test-time training for self-supervised test-time adaption. In:Proc. of the 25th Int'l Conf. on Artificial Intelligence and Statistics. 2022. 3080-3090.
    [24] Wang Q, Fink O, Van Gool L, et al. Continual test-time domain adaptation. In:Proc. of the 2022 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 2022. 7191-7201.[doi:10.1109/CVPR52688.2022.00706]
    [25] Boudiaf M, Mueller R, Ayed IB, et al. Parameter-free online test-time adaptation. In:Proc. of the 2022 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 2022. 8334-8343.[doi:10.1109/CVPR52688.2022.00816]
    [26] Niu S, Wu J, Zhang Y, et al. Towards stable test-time adaptation in dynamic wild world. In:Proc. of the 11th Int'l Conf. on Learning Representations. 2023.
    [27] Gong T, Jeong J, Kim T, et al. Robust continual test-time adaptation:instance-aware bn and prediction-balanced memory. In:Advances in Neural Information Processing Systems. 2022.
    [28] Scheirer WJ, De Rezende Rocha A, Sapkota A, et al. Toward open set recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012, 35(7):1757-1772.[doi:10.1109/TPAMI.2012.256]
    [29] Jain LP, Scheirer WJ, Boult TE. Multi-class open set recognition using probability of inclusion. In:Proc. of the European Conf. on Computer Vision (ECCV). 2014. 393-409.[doi:10.1007/978-3-319-10578-9\_26]
    [30] Ge Z, Demyanov S, Chen Z, et al. Generative openmax for multi-class open set classification. In:Proc. of the British Machine Vision Conf. 2017.
    [31] Oza P, Patel VM. C2ae:Class conditioned auto-encoder for open-set recognition. In:Proc. of the 2019 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 2019. 2307-2316.[doi:10.1109/CVPR.2019.00241]
    [32] Shao JJ, Yang XW, Guo LZ. Open-set learning under covariate shift. Machine Learning, 2022.[doi:10.1007/s10994-022-06237-1]
    [33] Sun Y, Wang X, Liu Z, et al. Test-time training with self-supervision for generalization under distribution shifts. In:Proc. of the 37th Int'l Conf. on Machine Learning. 2020. 9229-9248.
    [34] Liu Y, Kothari P, Van Delft B, et al. TTT++:When does self-supervised test-time training fail or thrive? In:Advances in Neural Information Processing Systems. 2021. 21808-21820.
    [35] Schneider S, Rusak E, Eck L, et al. Improving robustness against common corruptions by covariate shift adaptation. In:Advances in Neural Information Processing Systems. 2020. 11539-11551.
    [36] Ioffe S, Szegedy C. Batch normalization:Accelerating deep network training by reducing internal covariate shift. In:Proc. of the 32nd Int'l Conf. on Machine Learning. 2015. 448-456.
    [37] Shanmugam D, Blalock D, Balakrishnan G, et al. Better aggregation in test-time augmentation. In:Proc. of the 2021 IEEE/CVF Int'l Conf. on Computer Vision (ICCV). 2021. 1214-1223.[doi:10.1109/ICCV48922.2021.00125]
    [38] Phung VH, Rhee EJ. A high-accuracy model average ensemble of convolutional neural networks for classification of cloud image patches on small datasets. Applied Sciences, 2019, 9(21):4500.[doi:10.3390/app9214500]
    [39] Zhou ZH. Ensemble Learning. Springer, 2021.
    [40] Saito K, Saenko K. OVANet:One-vs-all network for universal domain adaptation. In:Proc. of the 2021 IEEE/CVF Int'l Conf. on Computer Vision (ICCV). 2021. 8980-8989.[doi:10.1109/ICCV48922.2021.00887]
    [41] Hendrycks D, Dietterich T. Benchmarking neural network robustness to common corruptions and perturbations. In:Proc. of the 7th Int'l Conf. on Learning Representations. 2019.
    [42] Hendrycks D, Gimpel K. A baseline for detecting misclassified and out-of-distribution examples in neural networks. In:Proc. of the 5th Int'l Conf. on Learning Representations. 2017.
    [43] Chen G, Qiao L, Shi Y, et al. Learning open set network with discriminative reciprocal points. In:Proc. of the European Conf. on Computer Vision (ECCV). 2020. 507-522.[doi:10.1007/978-3-030-58580-8_30]
    [44] He K, Zhang X, Ren S, et al. Identity mappings in deep residual networks. In:Proc. of the European Conf. on Computer Vision (ECCV). 2016. 630-645.[doi:10.1007/978-3-319-46493-0_38]
    [45] Dhamija AR, Günther M, Boult T. Reducing network agnostophobia. In:Advances in Neural Information Processing Systems. 2018. 9175-9186.
    附中文参考文献:
    [4] 窦文, 王怀民, 贾焰, 等. 构造基于推荐的Peer-to-Peer环境下的Trust模型. 软件学报, 2004, 15(4):571-583. http://www.jos.org.cn/1000-9825/15/571.htm
    [6] 朱鹏飞, 张琬迎, 王煜, 等. 考虑多粒度类相关性的对比式开放集识别方法. 软件学报, 2022, 33(4):1156-1169. https://www.jos.org.cn/1000-9825/6468.htm[doi:10.13328/j.cnki.jos.006468]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周植,张丁楚,李宇峰,张敏灵.面向开集识别的稳健测试时适应方法.软件学报,2024,35(4):1667-1681

复制
分享
文章指标
  • 点击次数:1142
  • 下载次数: 3478
  • HTML阅读次数: 1827
  • 引用次数: 0
历史
  • 收稿日期:2023-05-11
  • 最后修改日期:2023-07-07
  • 在线发布日期: 2023-09-11
  • 出版日期: 2024-04-06
文章二维码
您是第19728040位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号