面向开集识别的稳健测试时适应方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

李宇峰,E-mail:liyf@nju.edu.cn

中图分类号:

基金项目:

科技创新2030—“新一代人工智能”重大项目(2022ZD0114803); 国家自然科学基金(62176118)


Towards Robust Test-time Adaptation Method for Open-set Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    开集识别旨在研究测试阶段突现未见类别对于机器学习模型的挑战, 以期学习模型既能分类已见类别又可识别/拒绝未见类别, 是确保机器学习模型能够在开放世界中高效稳健部署的重要技术. 既有开集识别技术通常假设已见类别的协变量分布在训练与测试阶段维持不变. 然而在实际场景中, 类别的协变量分布常不断变化. 直接利用既有技术不再奏效, 其性能甚至劣于基线方案. 因此, 亟需研究新型开集识别方法, 使其能不断适应协变量分布偏移, 以期模型在测试阶段既能稳健分类已见类别又可识别未见类别. 将此新问题设置命名为开放世界适应问题(AOW), 并提出了一种开放测试时适应方法(OTA). 该方法基于无标注测试数据优化自适应熵损失与开集熵损失更新模型, 维持对已见类的既有判别能力, 同时增强了识别未见类的能力. 大量实验分析表明, 该方法在多组基准数据集、多组不同协变量偏移程度下均稳健地优于现有先进的开集识别方法.

    Abstract:

    Open-set recognition is an important issue for ensuring the efficient and robust deployment of machine learning models in the open world. It aims to address the challenge of encountering samples from unseen classes that emerge during testing, i.e., to accurately classify the seen classes while identifying and rejecting the unseen ones. Current open-set recognition studies assume that the covariate distribution of the seen classes remains constant during both training and testing. However, in practical scenarios, the covariate distribution is constantly shifting, which can cause previous methods to fail, and their performance may even be worse than the baseline method. Therefore, it is urgent to study novel open-set recognition methods that can adapt to the constantly changing covariate distribution so that they can robustly classify seen categories and identify unseen categories during testing. This novel problem adaptation in the open world (AOW) is named and a test-time adaptation method is proposed for open-set recognition called open-set test-time adaptation (OTA). OTA method only utilizes unlabeled test data to update the model with adaptive entropy loss and open-set entropy loss, maintaining the model’s ability to discriminate seen classes while further enhancing its ability to recognize unseen classes. Comprehensive experiments are conducted on multiple benchmark datasets with different covariate shift levels. The results show that the proposal is robust to covariate shift and demonstrates superior performance compared to many state-of-the-art methods.

    参考文献
    相似文献
    引证文献
引用本文

周植,张丁楚,李宇峰,张敏灵.面向开集识别的稳健测试时适应方法.软件学报,2024,35(4):1667-1681

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-11
  • 最后修改日期:2023-07-07
  • 录用日期:
  • 在线发布日期: 2023-09-11
  • 出版日期: 2024-04-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号