基于静态与动态学习需求感知的知识点推荐方法
作者:
作者简介:

周洋涛(1998-), 男, 博士生, 主要研究领域为推荐系统, 数据挖掘, 知识图谱;李青山(1973-), 男, 博士, 教授, 博士生导师, CCF杰出会员, 主要研究领域为大数据智能化分析技术, 智能软件工程;褚华(1977-), 女, 博士, 副教授, 主要研究领域为面向对象技术, 软件工程, 推荐系统;李佳楠(1991-), 女, 博士, 讲师, 主要研究领域为视频行为识别, 图像及视频理解, 推荐系统;高明彪(2000-), 男, 硕士生, 主要研究领域为推荐系统, 知识图谱;卫彪彪(1999-), 男, 硕士生, 主要研究领域为推荐系统, 智能问答.

通讯作者:

褚华, E-mail: hchu@mail.xidian.edu.cn

中图分类号:

TP311

基金项目:

国家自然科学基金(61972300, U21B2015, 62202356); 陕西省科协青年人才托举计划(20220113); 西安电子科技大学智慧金融软件工程新技术联合实验室项目(99901220858)


Knowledge Point Recommendation Method Based on Static and Dynamic Learning Demand Perception
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着互联网信息技术的高速发展, 线上学习资源的爆炸式增长引起了“信息过载”与“学习迷航”问题. 在缺乏专家指导的场景中, 用户难以明确自己的学习需求并从海量的学习资源中选择合适的内容进行学习. 教育领域推荐方法能够基于用户的历史学习行为提供学习资源的个性化推荐, 因此该方法近年来受到大量研究人员的广泛关注. 然而, 现有的教育领域推荐方法在学习需求感知时忽略了对知识点之间复杂关系的建模, 同时缺乏考虑用户学习需求的动态性变化, 导致推荐的学习资源不够精准. 针对上述问题, 提出一种基于静态与动态学习需求感知的知识点推荐方法, 通过静态感知与动态感知相结合的方式建模复杂知识关联下的用户学习行为. 对于静态学习需求感知, 设计一种基于知识点先修后继元路径引导的注意力图卷积网络, 通过建模知识点之间先修后继关系的复杂约束, 能够消除其他非学习需求因素的干扰, 从而精准地捕获用户在细粒度知识点层面上的静态学习需求; 对于动态学习需求感知, 所提方法以课程为单元聚合知识点嵌入以表征用户在不同时刻的知识水平, 然后采用循环神经网络建模编码用户的知识水平序列, 能够有效地挖掘用户知识水平变化中蕴含的动态学习需求; 最后, 对获得的静态与动态学习需求进行融合, 在同一框架下建模静态与动态学习需求之间的兼容性, 促进这两种学习需求相互补充, 以实现细粒度的个性化知识点推荐. 实验表明, 在两个公开数据集上, 所提方法能够有效地感知用户的学习需求并提供个性化的知识点推荐, 在多种评估指标上优于主流的推荐方法.

    Abstract:

    With the rapid development of Internet information technologies, the explosive growth of online learning resources has caused the problem of “information overload” and “learning disorientation”. In the absence of expert guidance, it is difficult for users to identify their learning demands and select the appropriate content from the vast amount of learning resources. Educational domain recommendation methods have received a lot of attention from researchers in recent years because they can provide personalized recommendations of learning resources based on the historical learning behaviors of users. However, the existing educational domain recommendation methods ignore the modeling of complex relationships among knowledge points in learning demand perception and fail to consider the dynamic changes of users’ learning demands, which leads to inaccurate learning resource recommendations. To address the above problems, this study proposes a knowledge point recommendation method based on static and dynamic learning demand perception, which models users’ learning behaviors under complex knowledge association by combining static perception and dynamic perception. For static learning demand perception, this study innovatively designs an attentional graph convolutional network based on the first-course-following meta-path guidance of knowledge points, which can accurately capture users’ static learning demands at the fine-grained knowledge point level by modeling the complex constraints of the first-course-following relationship between knowledge points and eliminating the interference of other non-learning demand factors. For dynamic learning demand perception, the method aggregates knowledge point embeddings to characterize users’ knowledge levels at different moments by taking courses as units and then uses a recurrent neural network to encode users’ knowledge level sequences, which can effectively explore the dynamic learning demands hidden in users’ knowledge level changes. Finally, this study fuses the obtained static and dynamic learning demands, models the compatibility between static and dynamic learning demands in the same framework, and promotes the complementarity of these two learning demands to achieve fine-grained and personalized knowledge point recommendations. Experiments show that the proposed method can effectively perceive users’ learning demands, provide personalized knowledge point recommendations on two publicly available datasets, and outperform the mainstream recommendation methods in terms of various evaluation metrics.

    参考文献
    [1] Zhong L, Wei YT, Yao H, Deng W, Wang ZF, Tong MW. Review of deep learning-based personalized learning recommendation. In: Proc. of the 11th Int’l Conf. on E-education, E-business, E-management, and E-learning. Osaka: Association for Computing Machinery, 2020. 145–149.
    [2] 沈苗, 来天平, 王素美, 彭一明, 高志同. 北京大学课程推荐引擎的设计和实现. 智能系统学报, 2015, 10(3): 369–375. [doi: 10.3969/j.issn.1673-4785.201409045]
    Shen M, Lai TP, Wang SM, Peng YM, Gao ZT. Design and implementation of the course recommendation engine in Peking University. CAAI Trans. on Intelligent Systems, 2015, 10(3): 369–375 (in Chinese with English abstract). [doi: 10.3969/j.issn.1673-4785.201409045]
    [3] 宋晓丽, 贺龙威. 基于改进自编码器的在线课程推荐模型. 计算机系统应用, 2022, 31(3): 288–293. [doi: 10.15888/j.cnki.csa.008356]
    Song XL, He LW. Online course recommendation model based on enhanced auto-encoder. Computer Systems & Applications, 2022, 31(3): 288–293 (in Chinese with English abstract). [doi: 10.15888/j.cnki.csa.008356]
    [4] 歹杰, 李青山, 褚华, 周洋涛, 杨文勇, 卫彪彪. 突破智慧教育: 基于图学习的课程推荐系统. 软件学报, 2022, 33(10): 3656–3672. http://www.jos.org.cn/1000-9825/6629.htm
    Dai J, Li QS, Chu H, Zhou YT, Yang WY, Wei BB. Breakthrough in smart education: Course recommendation system based on graph learning. Ruan Jian Xue Bao/Journal of Software, 2022, 33(10): 3656–3672 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6629.htm
    [5] Zhu YF, Lu H, Qiu P, Shi KZ, Chambua J, Niu ZD. Heterogeneous teaching evaluation network based offline course recommendation with graph learning and tensor factorization. Neurocomputing, 2020, 415: 84–95. [doi: 10.1016/j.neucom.2020.07.064]
    [6] 徐欣, 孙玉虹, 丁长青, 刘利聪. 一种知识图谱增强的在线课程推荐方法. 软件导刊, 2022, 21(1): 9–14. [doi: 10.11907/rjdk.212588]
    Chen X, Sun YH, Ding CQ, Liu LC. An online course recommendation method enhanced by knowledge graph. Software Guide, 2022, 21(1): 9–14 (in Chinese with English abstract). [doi: 10.11907/rjdk.212588]
    [7] Gong JB, Wang S, Wang JL, Feng WZ, Peng H, Tang J, Yu PS. Attentional graph convolutional networks for knowledge concept recommendation in MOOCs in a heterogeneous view. In: Proc. of the 43rd Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. Association for Computing Machinery, 2020. 79–88.
    [8] Wang C, Zhu HS, Zhu C, Zhang X, Chen EH, Xiong H. Personalized employee training course recommendation with career development awareness. In: Proc. of the 2020 Web Conf. Taipei: Association for Computing Machinery, 2020. 1648–1659.
    [9] Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992, 35(12): 61–70. [doi: 10.1145/138859.138867]
    [10] Linden G, Smith B, York J. Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76–80. [doi: 10.1109/MIC.2003.1167344]
    [11] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer, 2009, 42(8): 30–37. [doi: 10.1109/MC.2009.263]
    [12] 王喆. 深度学习推荐系统. 北京: 电子工业出版社, 2020. 50–100.
    Wang Z. Deep Learning Recommender System. Beijing: Publishing House of Electronics Industry, 2020. 50–100 (in Chinese).
    [13] He XN, Liao LZ, Zhang HW, Nie LQ, Hu X, Chua TS. Neural collaborative filtering. In: Proc. of the 26th Int’l Conf. on World Wide Web. Perth: Int’l World Wide Web Conf. Steering Committee, 2017. 173–182.
    [14] van den Berg R, Kipf TN, Welling M. Graph convolutional matrix completion. In: Proc. of the 24th ACM Int’l Conf. on Knowledge Discovery and Data Mining. London: Association for Computing Machinery, 2018. 9.
    [15] He XN, Deng K, Wang X, Li Y, Zhang YD, Wang M. LightGCN: Simplifying and powering graph convolution network for recommendation. In: Proc. of the 43rd Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York: Association for Computing Machinery, 2020. 639–648.
    [16] Zhou GR, Zhu XQ, Song CR, Fan Y, Zhu H, Ma X, Yan YH, Jin JQ, Li H, Gai K. Deep interest network for click-through rate prediction. In: Proc. of the 24th ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. London: Association for Computing Machinery, 2018. 1059–1068.
    [17] Zhou GR, Mou N, Fan Y, Pi Q, Bian WJ, Zhou C, Zhu XQ, Gai K. Deep interest evolution network for click-through rate prediction. In: Proc. of the 33rd AAAI Conf. on Artificial Intelligence. Honolulu: AAAI, 2019. 5941–5948.
    [18] Tian Y, Chang JX, Niu YN, Song Y, Li CL. When multi-level meets multi-interest: A multi-grained neural model for sequential recommendation. In: Proc. of the 45th Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. Madrid: Association for Computing Machinery, 2022. 1632–1641.
    [19] Chen C, Zhang M, Zhang YF, Liu YQ, Ma SP. Efficient neural matrix factorization without sampling for recommendation. ACM Transactions on Information Systems, 2020, 38(2): 14. [doi: 10.1145/3373807]
    [20] Mao KL, Zhu JM, Wang JP, Dai QY, Dong ZH, Xiao X, He XQ. SimpleX: A simple and strong baseline for collaborative filtering. In: Proc. of the 30th ACM Int’l Conf. on Information & Knowledge Management. Queensland: Association for Computing Machinery, 2021. 1243–1252.
    [21] Shi C, Hu BB, Zhao WX, Yu PS. Heterogeneous information network embedding for recommendation. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2): 357–370. [doi: 10.1109/TKDE.2018.2833443]
    [22] Wang ZK, Liu HZ, Du YP, Wu ZH, Zhang X. Unified embedding model over heterogeneous information network for personalized recommendation. In: Proc. of the 28th Int’l Joint Conf. on Artificial Intelligence. Macao: IJCAI.org, 2019. 3813–3819.
    [23] 吴昊, 徐行健, 孟繁军. 课程资源的融合知识图谱多任务特征推荐算法. 计算机工程与应用, 2021, 57(21): 132–139. [doi: 10.3778/j.issn.1002-8331.2010-0287]
    Wu H, Xu XJ, Meng FJ. Knowledge graph-assisted multi-task feature-based course recommendation algorithm. Computer Engineering and Applications, 2021, 57(21): 132–139 (in Chinese with English abstract). [doi: 10.3778/j.issn.1002-8331.2010-0287]
    [24] 王宇, 朱梦霞, 杨尚辉, 陆雪松, 周傲英. 深度知识追踪模型综述和性能比较. 软件学报, 2023, 34(3): 1365–1395. http://www.jos.org.cn/1000-9825/6715.htm
    Wang Y, Zhu MX, Yang SH, Lu XS, Zhou AY. Review and performance comparison of deep knowledge tracing models. Ruan Jian Xue Bao/Journal of Software, 2023, 34(3): 1365–1395 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6715.htm
    [25] Jiang WJ, Pardos ZA, Wei Q. Goal-based course recommendation. In: Proc. of the 9th Int’l Conf. on Learning Analytics & Knowledge. Tempe: Association for Computing Machinery, 2019. 36–45.
    [26] Zhao JJ, Bhatt S, Thille C, Zimmaro D, Gattani N. Interpretable personalized knowledge tracing and next learning activity recommendation. In: Proc. of the 7th ACM Conf. on Learning@Scale. New York: Association for Computing Machinery, 2020. 325–328.
    [27] Wang SJ, Hu L, Wang Y, Sheng QZ, Orgun M, Cao LB. Intention2Basket: A neural intention-driven approach for dynamic next-basket planning. In: Proc. of the 29th Int’l Joint Conf. on Artificial Intelligence. Yokohama: ijcai.org, 2021. 2333–2339.
    [28] Nabizadeh AH, Leal JP, Rafsanjani HN, Shah RR. Learning path personalization and recommendation methods: A survey of the state-of-the-art. Expert Systems with Applications, 2020, 159: 113596. [DOI: 10.1016/j.eswa.2020.113596]
    [29] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. In: Proc. of the 1st Int’l Conf. on Learning Representations. Scottsdale: ICLR, 2013.
    [30] 李晓光, 魏思齐, 张昕, 杜岳峰, 于戈. LFKT: 学习与遗忘融合的深度知识追踪模型. 软件学报, 2021, 32(3): 818?830. http://www.jos.org.cn/1000-9825/6185.htm
    Li XG, Wei SQ, Zhang X, Du YF, Yu G. LFKT: Deep knowledge tracing model with learning and forgetting behavior merging. Ruan Jian Xue Bao/Journal of Software, 2021, 32(3): 818?830 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6185.htm
    [31] Yu F, Liu Q, Wu S, Wang L, Tan TN. A dynamic recurrent model for next basket recommendation. In: Proc. of the 39th Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. Pisa: Association for Computing Machinery, 2016. 729–732.
    [32] Qin YQ, Wang PF, Li CL. The world is binary: Contrastive learning for denoising next basket recommendation. In: Proc. of the 44th Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. Association for Computing Machinery, 2021. 859–868.
    [33] Fang H, Zhang DN, Shu YH, Guo GB. Deep learning for sequential recommendation: Algorithms, influential factors, and evaluations. ACM Transactions on Information Systems, 2020, 39(1): 10. [doi: 10.1145/3426723]
    [34] Hidasi B, Karatzoglou A, Baltrunas L, Tikk D. Session-based recommendations with recurrent neural networks. In: Proc. of the 4th Int’l Conf. on Learning Representations. San Juan: ICLR, 2016.
    [35] Yu JF, Luo G, Xiao T, Zhang QY, Wang YQ, Feng WZ, Luo JY, Wang CY, Hou L, Li JZ, Liu ZY, Tang J. MOOCCube: A large-scale data repository for NLP applications in MOOCs. In: Proc. of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2020. 3135–3142.
    [36] Bai T, Nie JY, Zhao WX, Zhu YT, Du P, Wen JR. An attribute-aware neural attentive model for next basket recommendation. In: Proc. of the 41st Int’l ACM SIGIR Conf. on Research & Development in Information Retrieval. Ann Arbor: Association for Computing Machinery, 2018. 1201–1204.
    [37] Zhang YZ, Luo L, Zhang JJ, Lu Q, Wang Y, Wang ZY. Correlation-aware next basket recommendation using graph attention networks. In: Proc. of the 27th Int’l Conf. on Neural Information Processing. Bangkok: Springer, 2020. 746–753.
    [38] Shao EZ, Guo SY, Pardos ZA. Degree planning with PLAN-BERT: Multi-semester recommendation using future courses of interest. In: Proc. of the 35th AAAI Conf. on Artificial Intelligence. AAAI, 2021. 14920–14929.
    [39] Hu HJ, He XN, Gao JY, Zhang ZL. Modeling personalized item frequency information for next-basket recommendation. In: Proc. of the 43rd Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York: Association for Computing Machinery, 2020. 1071–1080.
    [40] Zhao WX, Mu SL, Hou YP, Lin ZH, Chen YS, Pan XY, Li KY, Lu YJ, Wang H, Tian CX, Min YQ, Feng ZC, Fan XY, Chen X, Wang PF, Ji WD, Li YL, Wang XL, Wen JR. RecBole: Towards a unified, comprehensive and efficient framework for recommendation algorithms. In: Proc. of the 30th ACM Int’l Conf. on Information & Knowledge Management. New York: Association for Computing Machinery, 2021. 4653–4664.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周洋涛,李青山,褚华,李佳楠,高明彪,卫彪彪.基于静态与动态学习需求感知的知识点推荐方法.软件学报,2024,35(9):4425-4447

复制
分享
文章指标
  • 点击次数:845
  • 下载次数: 2245
  • HTML阅读次数: 720
  • 引用次数: 0
历史
  • 收稿日期:2022-07-09
  • 最后修改日期:2023-02-15
  • 在线发布日期: 2023-08-30
  • 出版日期: 2024-09-06
文章二维码
您是第20059224位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号