基于对抗生成网络的缺陷定位模型域数据增强方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62272072);中央高校基本科研业务费(2022CDJDX-005)


Model-domain Data Augmentation Using Generative Adversarial Network for Fault Localization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    缺陷定位获取并分析测试用例集的运行信息, 从而度量出各个语句为缺陷的可疑性. 测试用例集由输入域数据构建, 包含成功测试用例和失败测试用例两种类型. 由于失败测试用例在输入域分布不规律且比例很低, 失败测试用例数量往往远少于成功测试用例数量. 已有研究表明, 少量失败测试用例会导致测试用例集出现类别不平衡问题, 严重影响着缺陷定位有效性. 为了解决这个问题, 提出基于对抗生成网络的缺陷定位模型域数据增强方法. 该方法基于模型域(即缺陷定位频谱信息)而非传统输入域(即程序输入), 利用对抗生成网络合成覆盖最小可疑集合的模型域失败测试用例, 从模型域上解决类别不平衡的问题. 实验结果表明, 所提方法大幅提升了11种典型缺陷定位方法的效能.

    Abstract:

    Fault localization collects and analyzes the runtime information of test case sets to evaluate the suspiciousness of each statement of being faulty. Test case sets are constructed by the data from the input domain and have two types, i.e., passing test cases and failing ones. Since failing test cases generally account for a very small portion of the input domain, and their distribution is usually random, the number of failing test cases is much fewer than that of passing ones. Previous work has shown that the lack of failing test cases leads to a class-imbalanced problem of test case sets, which severely hampers fault localization effectiveness. To address this problem, this study proposes a model-domain data augmentation approach using generative adversarial network for fault localization. Based on the model domain (i.e., spectrum information of fault localization) rather than the traditional input domain (i.e., program input), this approach uses the generative adversarial network to synthesize the model-domain failing test cases covering the minimum suspicious set, so as to address the class-imbalanced problem from the model domain. The experimental results show that the proposed approach significantly improves the effectiveness of 12 representative fault localization approaches.

    参考文献
    相似文献
    引证文献
引用本文

张卓,雷晏,毛晓光,薛建新,常曦.基于对抗生成网络的缺陷定位模型域数据增强方法.软件学报,2024,35(5):2289-2306

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-07
  • 最后修改日期:2022-11-17
  • 录用日期:
  • 在线发布日期: 2023-08-30
  • 出版日期: 2024-05-06
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号