面向知识结构分析的模糊概念格模型
作者:
基金项目:

国家自然科学基金(11971211);河南省自然科学基金(222300420445);河南省高校基本科研业务费专项(NSFRF210318)


Fuzzy Concept Lattice Models for Knowledge Structure Analysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [64]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    知识空间理论使用数学语言对学习者进行知识评价与学习指导, 属于数学心理学的研究范畴. 技能与问题是构成知识空间的两个基本要素, 深入研究两者之间的关系是知识状态刻画与知识结构分析的内在要求. 在当前的知识空间理论研究中, 没有明确建立技能与问题之间的双向映射, 从而难以提出直观概念意义下的知识结构分析模型, 也没有明确建立知识状态之间的偏序关系, 不利于刻画知识状态之间的差异, 更不利于规划学习者未来的学习路径. 此外, 现有的成果主要集中在经典的知识空间, 没有考虑实际问题中数据的不确定性. 为此, 将形式概念分析与模糊集引入知识空间理论, 建立面向知识结构分析的模糊概念格模型. 具体地, 分别建立知识空间与闭包空间的模糊概念格模型. 首先, 建立知识空间模糊概念格, 并通过任意两个概念的上确界证明所有概念的外延构成知识空间. 引入粒描述的思想定义技能诱导的问题原子粒, 由问题原子粒的组合判定一个问题组合是否是知识空间中的一个状态, 进而提出由问题组合获取知识空间模糊概念的方法. 其次, 建立闭包空间模糊概念格, 并通过任意两个概念的下确界证明所有概念的外延构成闭包空间. 类似地, 定义问题诱导的技能原子粒, 由技能原子粒的组合判定一个技能组合是否是闭包空间中某一知识状态所需的技能, 进而提出由技能组合获取闭包空间模糊概念的方法. 最后, 通过实验分析问题数量、技能数量、填充因子以及分析尺度对知识空间与闭包空间规模的影响. 结论表明知识空间模糊概念不同于现有的任何概念, 也不能从其他概念派生而来. 闭包空间模糊概念本质上是一种面向属性单边模糊概念. 在二值技能形式背景中, 知识空间与闭包空间中的状态具有一一对应关系, 但这种关系在模糊技能形式背景中并不成立.

    Abstract:

    Knowledge space theory, which uses mathematical language for the knowledge evaluation and learning guide of learners, belongs to the research field of mathematical psychology. Skills and problems are the two basic elements of knowledge space, and an in-depth study of the relationship between them is the inherent requirement of knowledge state description and knowledge structure analysis. In the existing knowledge space theory, no explicit bi-directional mapping between skills and problems has been established, which makes it difficult to put forward a knowledge structure analysis model under intuitive conceptual meanings. Moreover, the partial order relationship between knowledge states has not been clearly obtained, which is not conducive to depicting the differences between knowledge states and planning the learning path of learners. In addition, the existing achievements mainly focus on the classical knowledge space, without considering the uncertainties of data in practical problems. To this end, this study introduces formal concept analysis and fuzzy sets into knowledge space theory and builds the fuzzy concept lattice models for knowledge structure analysis. Specifically, fuzzy concept lattice models of knowledge space and closure space are presented. Firstly, the fuzzy concept lattice of knowledge space is constructed, and it is proved that the extents of all concepts form a knowledge space by the upper bounds of any two concepts. The idea of granule description is introduced to define the skill-induced atomic granules of problems, whose combinations can help determine whether a combination of problems is a state in the knowledge space. On this basis, a method to obtain the fuzzy concepts in the knowledge space from the problem combinations is proposed. Secondly, the fuzzy concept lattice of closure space is established, and it is proved that the extents of all concepts form the closure space by the lower bounds of any two concepts. Similarly, the problem-induced atomic granules of skills are defined, and their combinations can help determine whether a skill combination is the skills required by a knowledge state in the closure space. In this way, a method to obtain the fuzzy concepts in the closure space from the skill combinations is presented. Finally, the effects of the number of problems, the number of skills, the filling factor, and the analysis scale on the sizes of knowledge space and closure space are analyzed by some experiments. The results show that the fuzzy concepts in the knowledge space are different from any existing concept and cannot be derived from other concepts. The fuzzy concepts in the closure space are attribute-oriented one-sided fuzzy concepts in essence. In the formal context of two-valued skills, there is one-to-one correspondence between the states in knowledge space and closure space, but this relationship does not hold in the formal context of fuzzy skills.

    参考文献
    [1] Doignon JP, Falmagne JC. Spaces for the assessment of knowledge. International Journal of Man-Machine Studies, 1985, 23(2):175-196.[doi:10.1016/S0020-7373(85)80031-6]
    [2] Falmagne JC, Albert D, Doble C, Eppstein D, Hu XG. Knowledge Spaces:Applications in Education. Berlin:Springer, 2013.
    [3] Doble C, Matayoshi J, Cosyn E, Uzun H, Karami A. A data-based simulation study of reliability for an adaptive assessment based on knowledge space theory. International Journal of Artificial Intelligence in Education, 2019, 29(2):258-282.[doi:10.1007/s40593-019-00176-0]
    [4] Ferreira A, Felipussi SC, Alfaro C, Fonseca P, Vargas-Muñoz JE, dos Santos JA, Rocha A. Behavior knowledge space-based fusion for copy-move forgery detection. IEEE Transactions on Image Processing, 2016, 25(10):4729-4742.[doi:10.1109/TIP.2016.2593583]
    [5] Facco P, Dal Pastro F, Meneghetti N, Bezzo F, Barolo M. Bracketing the design space within the knowledge space in pharmaceutical product development. Industrial & Engineering Chemistry Research, 2015, 54(18):5128-5138.[doi:10.1021/acs.iecr.5b00863]
    [6] Noventa S, Spoto A, Heller J, Kelava A. On a generalization of local independence in item response theory based on knowledge space theory. Psychometrika, 2019, 84(2):395-421.[doi:10.1007/s11336-018-9645-6]
    [7] Segedinac MT, Horvat S, Rodić DD, Rončević TN, Savić G. Using knowledge space theory to compare expected and real knowledge spaces in learning stoichiometry. Chemistry Education Research and Practice, 2018, 19(3):670-680.[doi:10.1039/c8rp00052b]
    [8] Reimann P, Kickmeier-Rust M, Albert D. Problem solving learning environments and assessment:A knowledge space theory approach. Computers & Education, 2013, 64:183-193.[doi:10.1016/j.compedu.2012.11.024]
    [9] Rusch A, Wille R. Knowledge spaces and formal concept analysis. In:Bock HH, Polasek W, eds. Data Analysis and Information Systems. Berlin:Springer, 1996. 427-436.
    [10] Spoto A, Stefanutti L, Vidotto G. An iterative procedure for extracting skill maps from data. Behavior Research Methods, 2016, 48(2):729-741.[doi:10.3758/s13428-015-0609-9]
    [11] Doignon JP. Knowledge spaces and skill assignments. In:Fischer GH, Laming D, eds. Contributions to Mathematical Psychology, Psychometrics, and Methodology. New York:Springer, 1994. 111-121.
    [12] Stefanutti L, de Chiusole D, Gondan M, Maurer A. Modeling misconceptions in knowledge space theory. Journal of Mathematical Psychology, 2020, 99:102435.[doi:10.1016/j.jmp.2020.102435]
    [13] Sun W, Li JJ, Ge X, Lin YD. Knowledge structures delineated by fuzzy skill maps. Fuzzy Sets and Systems, 2021, 407:50-66.[doi:10.1016/j.fss.2020.10.004]
    [14] Heller J, Anselmi P, Stefanutti L, Robusto E. A necessary and sufficient condition for unique skill assessment. Journal of Mathematical Psychology, 2017, 79:23-28.[doi:10.1016/j.jmp.2017.05.004]
    [15] Stefanutti L, de Chiusole D. On the assessment of learning in competence based knowledge space theory. Journal of Mathematical Psychology, 2017, 80:22-32.[doi:10.1016/j.jmp.2017.08.003]
    [16] Sun W, Li JJ, Lin FC, He ZR. Constructing polytomous knowledge structures from fuzzy skills. Fuzzy Sets and Systems, 2023, 461:108395.
    [17] 孙晓燕, 李进金. 基于程序性知识学习的项目状态转移函数与多分知识结构. 模式识别与人工智能, 2022, 35(3):223-242.[doi:10.16451/j.cnki.issn1003-6059.202203003]
    Sun XY, Li JJ. Item state transition functions and polytomous knowledge structures based on procedural knowledge learning. Pattern Recognition and Artificial Intelligence, 2022, 35(3):223-242 (in Chinese with English abstract).[doi:10.16451/j.cnki.issn1003-6059.202203003]
    [18] Zadeh LA. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 1997, 90(2):111-127.[doi:10.1016/S0165-0114(97)00077-8]
    [19] Fujita H, Gaeta A, Loia V, Orciuoli F. Resilience analysis of critical infrastructures:A cognitive approach based on granular computing. IEEE Transactions on Cybernetics, 2019, 49(5):1835-1848.[doi:10.1109/TCYB.2018.2815178]
    [20] 苗夺谦, 张清华, 钱宇华, 梁吉业, 王国胤, 吴伟志, 高阳, 商琳, 顾沈明, 张红云. 从人类智能到机器实现模型——粒计算理论与方法. 智能系统学报, 2016, 11(6):743-757.[doi:10.11992/tis.201612014]
    Miao DQ, Zhang QH, Qian YH, Liang JY, Wang GY, Wu WZ, Gao Y, Shang L, Gu SM, Zhang HY. From human intelligence to machine implementation model:Theories and applications based on granular computing. CAAI Transactions on Intelligent Systems, 2016, 11(6):743-757 (in Chinese with English abstract).[doi:10.11992/tis.201612014]
    [21] 智慧来, 李金海. 基于必然属性分析的粒描述. 计算机学报, 2018, 41(12):2702-2719.[doi:10.11897/SP.J.1016.2018.02702]
    Zhi HL, Li JH. Granule description based on necessary attribute analysis. Chinese Journal of Computers, 2018, 41(12):2702-2719 (in Chinese with English abstract).[doi:10.11897/SP.J.1016.2018.02702]
    [22] Falmagne JC, Doignon JP. Learning Spaces:Interdisciplinary Applied Mathematics. Berlin:Springer, 2011.
    [23] Ganter B, Wille R. Formal Concept Analysis:Mathematical Foundations. Berlin:Springer, 1999.
    [24] Poelmans J, Ignatov DI, Kuznetsov SO, Dedene G. Formal concept analysis in knowledge processing:A survey on applications. Expert Systems with Applications, 2013, 40(16):6538-6560.[doi:10.1016/j.eswa.2013.05.009]
    [25] 徐伟华, 李金海, 魏玲, 张涛. 形式概念分析理论与应用. 北京:科学出版社, 2016.
    Xu WH, Li JH, Wei L, Zhang T. Formal Concept Analysis:Theory and Application. Beijing:Science Press, 2016 (in Chinese).
    [26] 邹丽, 冯凯华, 刘新. 语言值直觉模糊概念格及其应用. 计算机研究与发展, 2018, 55(8):1726-1734.[doi:10.7544/issn1000-1239.2018.20180240]
    Zou L, Feng KH, Liu X. Linguistic-valued intuitionistic fuzzy concept lattice and its application. Journal of Computer Research and Development, 2018, 55(8):1726-1734 (in Chinese with English abstract).[doi:10.7544/issn1000-1239.2018.20180240]
    [27] 刘宗田, 强宇, 周文, 李旭, 黄美丽. 一种模糊概念格模型及其渐进式构造算法. 计算机学报, 2007, 30(2):184-188.[doi:10.3321/j.issn:0254-4164.2007.02.004]
    Liu ZT, Qiang Y, Zhou W, Li X, Huang ML. A fuzzy concept lattice model and its incremental construction algorithm. Chinese Journal of Computers, 2007, 30(2):184-188 (in Chinese with English abstract).[doi:10.3321/j.issn:0254-4164.2007.02.004]
    [28] 李进金, 张燕兰, 吴伟志, 陈锦坤. 形式背景与协调决策形式背景属性约简与概念格生成. 计算机学报, 2014, 37(8):1768-1774.[doi:10.3724/SP.J.1016.2014.01768]
    Li JJ, Zhang YL, Wu WZ, Chen JK. Attribute reduction for formal context and consistent decision formal context and concept lattice generation. Chinese Journal of Computers, 2014, 37(8):1768-1774 (in Chinese with English abstract).[doi:10.3724/SP.J.1016.2014.01768]
    [29] 马垣, 马文胜. 概念格多属性渐减式构造. 软件学报, 2015, 26(12):3162-3173. http://www.jos.org.cn/1000-9825/4818.htm
    Ma Y, Ma WS. Construction of multi-attributes decrement for concept lattice. Ruan Jian Xue Bao/Journal of Software, 2015, 26(12):3162-3173 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4818.htm
    [30] 魏玲, 曹丽, 祁建军, 张文修. 形式概念分析中的概念约简与概念特征. 中国科学:信息科学, 2020, 50(12):1817-1833.[doi:10.1360/N112018-00272]
    Wei L, Cao L, Qi JJ, Zhang WX. Concept reduction and concept characteristics in formal concept analysis. Scientia Sinica Informationis, 2020, 50(12):1817-1833 (in Chinese with English abstract).[doi:10.1360/N112018-00272]
    [31] 李金海, 吴伟志. 形式概念分析的粒计算方法及其研究展望. 山东大学学报(理学版), 2017, 52(7):1-12.[doi:10.6040/j.issn.1671-9352.0.2017.279]
    Li JH, Wu WZ. Granular computing approach for formal concept analysis and its research outlooks. Journal of Shandong University (Natural Science), 2017, 52(7):1-12 (in Chinese with English abstract).[doi:10.6040/j.issn.1671-9352.0.2017.279]
    [32] Li JH, Mei CL, Xu WH, Qian YH. Concept learning via granular computing:A cognitive viewpoint. Information Sciences, 2015, 298:447-467.[doi:10.1016/j.ins.2014.12.010]
    [33] Xu WH, Pang JZ, Luo SQ. A novel cognitive system model and approach to transformation of information granules. International Journal of Approximate Reasoning, 2014, 55(3):853-866.[doi:10.1016/j.ijar.2013.10.002]
    [34] Xu WH, Li WT. Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets. IEEE Transactions on Cybernetics, 2016, 46(2):366-379.[doi:10.1109/TCYB.2014.2361772]
    [35] Wu WZ, Leung Y, Mi JS. Granular computing and knowledge reduction in formal contexts. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(10):1461-1474.[doi:10.1109/TKDE.2008.223]
    [36] Wei L, Zhang XH, Qi JJ. Granular reduction of property-oriented concept lattices. In:Proc. of the 18th Int'l Conf. on Conceptual Structures. Sarawak:Springer, 2010. 154-164.
    [37] 仇国芳, 马建敏, 杨宏志, 张文修. 概念粒计算系统的数学模型. 中国科学F辑:信息科学, 2009, 39(12):1239-1247.
    Qiu GF, Ma JM, Yang HZ, Zhang WX. A mathematical model for concept granular computing systems. Science China Information Sciences, 2010, 53(7):1397-1408 (in Chinese with English abstract).[doi:10.1007/s11432-010-3092-z]
    [38] Zhi HL, Qi JJ. Common-possible concept analysis:A granule description viewpoint. Applied Intelligence, 2022, 52(3):2975-2986.[doi:10.1007/S10489-021-02499-9]
    [39] Duntsch N, Gediga G. Modal-style operators in qualitative data analysis. In:Proc. of the 2002 IEEE Int'l Conf. on Data Mining. Maebashi:IEEE, 2002. 155-162.
    [40] Yao YY. Concept lattices in rough set theory. In:Proc. of the 2004 IEEE Annual Meeting of the Fuzzy Information. Banff:IEEE, 2004. 796-801.
    [41] Yao YY. A comparative study of formal concept analysis and rough set theory in data analysis. In:Proc. of the 4th Int'l Conf. on Rough Sets and Current Trends in Computing. Uppsala:Springer, 2004. 59-68.
    [42] Medina J. Relating attribute reduction in formal, object-oriented and property-oriented concept lattices. Computers & Mathematics with Applications, 2012, 64(6):1992-2002.[doi:10.1016/j.camwa.2012.03.087]
    [43] Medina J. Multi-adjoint property-oriented and object-oriented concept lattices. Information Sciences, 2012, 190:95-106.[doi:10.1016/j.ins.2011.11.016]
    [44] Ma JM, Cai MJ, Zou CJ. Concept acquisition approach of object-oriented concept lattices. International Journal of Machine Learning and Cybernetics, 2017, 8(1):123-134.[doi:10.1007/s13042-016-0576-1]
    [45] Shao MW, Guo L, Li L. A novel attribute reduction approach based on the object oriented concept lattice. In:Proc. of the 6th Int'l Conf. on Rough Sets and Knowledge Technology. Banff:Springer, 2011. 71-80.
    [46] Wang X, Zhang WX. Relations of attribute reduction between object and property oriented concept lattices. Knowledge-Based Systems, 2008, 21(5):398-403.[doi:10.1016/j.knosys.2008.02.005]
    [47] 梁吉业, 钱宇华, 李德玉, 胡清华. 大数据挖掘的粒计算理论与方法. 中国科学:信息科学, 2015, 45(11):1355-1369.[doi:10.1360/N112015-00092]
    Liang JY, Qian YH, Li DY, Hu QH. Theory and method of granular computing for big data mining. Scientia Sinica:Informationis, 2015, 45(11):1355-1369 (in Chinese with English abstract).[doi:10.1360/N112015-00092]
    [48] Zadeh LA. Fuzzy sets. Information and Control, 1965, 8(3):338-353.[doi:10.1016/S0019-9958(65)90241-X]
    [49] Wei L, Wan Q. Granular transformation and irreducible element judgment theory based on pictorial diagrams. IEEE Transactions on Cybernetics, 2016, 46(2):380-387.[doi:10.1109/TCYB.2014.2371476]
    [50] Djouadi Y, Prade H. Possibility-theoretic extension of derivation operators in formal concept analysis over fuzzy lattices. Fuzzy Optimization and Decision Making, 2011, 10(4):287-309.[doi:10.1007/s10700-011-9106-5]
    [51] Zhi HL, Li JH, Li YN. Multilevel conflict analysis based on fuzzy formal contexts. IEEE Transactions on Fuzzy Systems, 2022, 30(12):5128-5142.[doi:10.1109/TFUZZ.2022.3167789]
    [52] Xu WH, Guo DD, Qian YH, Ding WP. Two-way concept-cognitive learning method:A fuzzy-based progressive learning. IEEE Trans. on Fuzzy Systems, 2023, 31(6):1885-1899.
    引证文献
引用本文

智慧来,李金海.面向知识结构分析的模糊概念格模型.软件学报,2024,35(5):2466-2484

复制
相关视频

分享
文章指标
  • 点击次数:643
  • 下载次数: 1828
  • HTML阅读次数: 1075
  • 引用次数: 0
历史
  • 收稿日期:2022-08-25
  • 最后修改日期:2022-11-15
  • 在线发布日期: 2023-06-28
  • 出版日期: 2024-05-06
文章二维码
您是第20541065位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号