摘要:深度神经网络在许多领域中取得了显著的成果, 但相关研究结果表明, 深度神经网络很容易受到对抗样本的影响. 基于梯度的攻击是一种流行的对抗攻击, 引起了人们的广泛关注. 研究基于梯度的对抗攻击与常微分方程数值解法之间的关系, 并提出一种新的基于常微分方程数值解法-龙格库塔法的对抗攻击方法. 根据龙格库塔法中的预测思想, 首先在原始样本中添加扰动构建预测样本, 然后将损失函数对于原始输入样本和预测样本的梯度信息进行线性组合, 以确定生成对抗样本中需要添加的扰动. 不同于已有的方法, 所提出的方法借助于龙格库塔法中的预测思想来获取未来的梯度信息(即损失函数对于预测样本的梯度), 并将其用于确定所要添加的对抗扰动. 该对抗攻击具有良好的可扩展性, 可以非常容易地集成到现有的所有基于梯度的攻击方法. 大量的实验结果表明, 相比于现有的先进方法, 所提出的方法可以达到更高的攻击成功率和更好的迁移性.