面向知识图谱约束问答的强化学习推理技术
CSTR:
作者:
作者单位:

作者简介:

毕鑫(1987-),男,博士,副研究员,CCF专业会员,主要研究领域为大数据管理与分析,知识图谱,半结构化数据管理;袁野(1981-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为大数据管理,数据库理论与系统;聂豪杰(1996-),男,博士生,CCF学生会员,主要研究领域为机器学习,知识图谱;王国仁(1965-),男,博士,教授,博士生导师,CCF杰出会员,主要研究领域为不确定数据管理,数据密集型计算,可视媒体数据分析管理,非结构化数据管理,分布式查询处理与优化,生物信息学;赵相国(1973-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为大数据管理与分析,智能分析与决策,深度学习.

通讯作者:

聂豪杰,E-mail:qazxse2010@163.com

中图分类号:

基金项目:

国家自然科学基金(62072087,61932004,62002054,61972077,U2001211)


Reinforcement Learning Inference Techniques for Knowledge Graph Constrained Question Answering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    知识图谱问答任务通过问题分析与知识图谱推理,将问题的精准答案返回给用户,现已被广泛应用于智能搜索、个性化推荐等智慧信息服务中.考虑到关系监督学习方法人工标注的高昂代价,学者们开始采用强化学习等弱监督学习方法设计知识图谱问答模型.然而,面对带有约束的复杂问题,现有方法面临两大挑战:(1)多跳长路径推理导致奖励稀疏与延迟;(2)难以处理约束问题推理路径分支.针对上述挑战,设计了融合约束信息的奖励函数,能够解决弱监督学习面临的奖励稀疏与延迟问题;设计了基于强化学习的约束路径推理模型COPAR,提出了基于注意力机制的动作选择策略与基于约束的实体选择策略,能够依据问题约束信息选择关系及实体,缩减推理搜索空间,解决了推理路径分支问题.此外,提出了歧义约束处理策略,有效解决了推理路径歧义问题.采用知识图谱问答基准数据集对COPAR的性能进行了验证和对比.实验结果表明:与现有先进方法相比,在多跳数据集上性能相对提升了2%-7%,在约束数据集上性能均优于对比模型,准确率提升7.8%以上.

    Abstract:

    Knowledge graph based question answering (KGQA) analyzes natural language questions, performs reasoning over knowledge graphs, and ultimately returns accurate answers to them. It has been widely used in intelligent information services, such as modern search engines, and personalized recommendation. Considering the high cost of manual labeling of reasoning steps as supervision in the relation-supervised learning methods, scholars began to explore weak supervised learning methods, such as reinforcement learning, to design knowledge graph based question answering models. Nevertheless, as for the complex questions with constraints, existing reinforcement learning-based KGQA methods face two major challenges: (1) multi-hop long path reasoning leads to sparsity and delay rewards; (2) existing methods cannot handle the case of reasoning path branches with constraint information. To address the above challenges in constrained question answering tasks, a reward shaping strategy with constraint information is designed to solve the sparsity and delay rewards. In addition, reinforcement learning based constrained path reasoning model named COPAR is proposed. COPAR consists of an action determination strategy based on attention mechanism and an entity determination strategy based on constraint information. Itis capable of selecting the correct relations and entities according to the question constraint information, reducing the search space of reasoning, and ultimately solving the reasoning path branching problem. Moreover, an ambiguity constraint processing strategy is proposed to effectively solve the ambiguity problem of reasoning path. The performance of COPAR is verified and compared using benchmark datasets of knowledge graph based question answering task. The experimental results indicate that, compared with the existing methods, the performance on datasets of multi-hop questions is relatively improved by 2%-7%; the performance on datasets of constrained questions is higher than the rival models, and the accuracy is improved by at least 7.8%.

    参考文献
    相似文献
    引证文献
引用本文

毕鑫,聂豪杰,赵相国,袁野,王国仁.面向知识图谱约束问答的强化学习推理技术.软件学报,2023,34(10):4565-4583

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-05
  • 最后修改日期:2022-08-18
  • 录用日期:
  • 在线发布日期: 2023-01-13
  • 出版日期: 2023-10-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号