基于链接实体回放的多源知识图谱终身表示学习
作者:
作者简介:

孙泽群(1992-),男,博士生,CCF学生会员,主要研究领域为知识图谱表示学习;胡伟(1982-),男,博士,副教授,博士生导师,CCF高级会员,主要研究领域为知识图谱,数据集成,智能软件;崔员宁(1996-),男,博士生,主要研究领域为知识图谱表示学习.

通讯作者:

胡伟,E-mail:whu@nju.edu.cn

基金项目:

国家自然科学基金(62272219)


Lifelong Representation Learning of Multi-sourced Knowledge Graphs via Linked Entity Replay
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [68]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    知识图谱存储大量的结构化知识和丰富的语义信息,已被广泛应用于知识驱动的智能软件.随着智能应用的不断发展,它们对知识图谱的需求也在发生变化.而单一知识图谱往往具有数据不完备等缺点,难以满足需求.因此,支持新数据来源、融合多源知识已成为迫切需求.传统的知识图谱表示学习和应用范式只考虑单一图谱,忽视了不同图谱间的知识迁移.多源知识图谱联合训练虽然可以带来性能提升,但不支持新增知识图谱的拓展表示学习.鉴于此,提出了多源知识图谱终身表示学习的新范式.给定一个知识图谱序列,终身表示学习的目标是在学习新知识图谱的同时,从已学习的知识图谱与模型中获得知识迁移.为实现这一目标,提出了一个基于链接实体回放的多源知识图谱终身表示学习框架.首先,设计了一个以Transformer为编码器的知识图谱表示学习模型作为框架核心,利用关系相关性进行实体的链接预测;其次,提出了链接子图构造方法,基于实体对齐构建并回放新增知识图谱和已有知识图谱之间的链接子图进行终身学习和知识迁移;最后,采用动态结构方法,为每个知识图谱存储相应的模型参数快照来避免灾难性遗忘.多个链接预测基准数据集上的实验结果表明:所提出的表示学习模型可以取得最先进的性能,且提出的终身表示学习框架可以实现有效的知识迁移.

    Abstract:

    Knowledge graphs (KGs) store a great amount of structured knowledge and semantic information. They have been widely used by many knowledge-powered intelligent applications. With the rapid development of these applications, their requirements for knowledge also change. A single KG usually suffers from the incompleteness issue and is therefore unable to meet the requirement. This suggests an urgent demand for supporting new data sources and fusing multi-sourced knowledge. The conventional paradigm for KG representation learning and application only considers a single KG while ignores the knowledge transfer between different sources. Joint representation learning on multi-sourced KGs can bring performance improvement, but it cannot support the extended representation learning of new KGs. To resolve these issues, this paper presents a new paradigm, i.e., lifelong representation learning on multi-sourced KGs. Given a sequence of multi-sourced KGs, lifelong representation learning aims at benefiting from the previously-learned KG and embedding model when learning a new KG. To this end, this study proposes a lifelong learning framework based on linked entity replay. First, it designs a Transformer-based KG embedding model that leverages relation correlations for link prediction between entities. Second, it proposes a linked subgraph generation method. It leverages the entity alignment between different sources to build the subgraph and replays the linked entities to enable lifelong learning and knowledge transfer. Finally, it uses a dynamic model structure with model parameters and embeddings stored for each KG to avoid catastrophic forgetting. Experiments on benchmarks show that the proposed KG embedding model can achieve the state-of-the-art performance in link prediction, and the lifelong representation learning framework is effective and efficient in multi-sourced knowledge transfer compared with baselines.

    参考文献
    [1] Ji SX, Pan SR, Cambria E, Marttinen P, Yu PS. A survey on knowledge graphs: Representation, acquisition, and applications. IEEE Trans. on Neural Networks and Learning Systems, 2022, 33(2): 494-514.
    [2] Wang Q, Mao ZD, Wang B, Guo L. Knowledge graph embedding: A survey of approaches and applications. IEEE Trans. on Knowledge and Data Engineering, 2017, 29(12): 2724-2743.
    [3] Liu ZY, Sun MS, Lin YK, Xie RB. Knowledge representation learning: A review. Journal of Computer Research and Development, 2016, 53(2): 247-261(in Chinese with English abstract).
    [4] Chen XL, Chen MH, Fan CJ, Uppunda A, Sun YZ, Zaniolo C. Multilingual knowledge graph completion via ensemble knowledge transfer. In: Proc. of the EMNLP (Findings). 2020. 3227-3238.
    [5] Huang ZJ, Li Z, Jiang HM, Cao TY, Lu HQ, Yin B, Subbian K, Sun YZ, Wang W. Multilingual knowledge graph completion with self-supervised adaptive graph alignment. In: Proc. of the ACL. 2022. 474-485.
    [6] Bordes A, Usunier N, García-Durán A, Weston J, Yakhnenko O. Translating embeddings for modeling multi-relational data. In: Proc. of the NIPS. 2013. 2787-2795.
    [7] Wang Z, Zhang JW, Feng JL, Chen Z. Knowledge graph embedding by translating on hyperplanes. In: Proc. of the AAAI. 2014. 1112-1119.
    [8] Lin YK, Liu ZY, Sun MS, Liu Y, Zhu X. Learning entity and relation embeddings for knowledge graph completion. In: Proc. of the AAAI. 2015. 2181-2187.
    [9] Ji GL, He SZ, Xu LH, Liu K, Zhao J. Knowledge graph embedding via dynamic mapping matrix. In: Proc. of the ACL. 2015. 687696.
    [10] Fang Y, Zhao X, Tan Z, Yang SY, Xiao WD. A revised translation-based method for knowledge graph representation. Journal of Computer Research and Development, 2018, 55(1): 139-150(in Chinese with English abstract).
    [11] Sun ZQ, Deng ZH, Nie JY, Tang J. RotatE: Knowledge graph embedding by relational rotation in complex space. In: Proc. of the ICLR. 2019.
    [12] Yang BS, Yih TT, He XD, Gao JF, Deng L. Embedding entities and relations for learning and inference in knowledge bases. In: Proc. of the ICLR. 2015.
    [13] Trouillon T, Welbl J, Riedel S, Gaussier É, Bouchard G. Complex embeddings for simple link prediction. In: Proc. of the ICML. 2016. 2071-2080.
    [14] Kazemi SM, Poole D. SimplE embedding for link prediction in knowledge graphs. In: Proc. of the NeurIPS. 2018. 4289-4300.
    [15] Balazevic I, Allen C, Hospedales TM. TuckER: Tensor factorization for knowledge graph completion. In: Proc. of the EMNLP/ IJCNLP. 2019. 5184-5193.
    [16] Dettmers T, Minervini P, Stenetorp P, Riedel S. Convolutional 2D knowledge graph embeddings. In: Proc. of the AAAI. 2018. 1811-1818.
    [17] Guo LB, Sun ZQ, Hu W. Learning to exploit long-term relational dependencies in knowledge graphs. In: Proc. of the ICML. 2019. 2505-2514.
    [18] Vashishth S, Sanyal S, Nitin V, Talukdar PP. Composition-based multi-relational graph convolutional networks. In: Proc. of the ICLR. 2020.
    [19] Wang S, Wei XK, dos Santos CN, Wang ZG, Nallapati R, Arnold AO, Xiang B, Yu PS, Cruz IF. Mixed-curvature multi-relational graph neural network for knowledge graph completion. In: Proc. of the WWW. 2021. 1761-1771.
    [20] Wang Q, Huang PP, Wang HF, Dai ST, Jiang WB, Liu J, Lyu YJ, Zhu Y, Wu H. CoKE: Contextualized knowledge graph embedding. CoRR abs/1911.02168, 2019.
    [21] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. In: Proc. of the NIPS. 2017. 5998-6008.
    [22] Zhang NY, Xie X, Chen X, Deng SM, Ye HB, Chen HJ. Knowledge collaborative fine-tuning for low-resource knowledge graph completion. Ruan Jian Xue Bao/Journal of Software, 2022, 33(10): 3531-3545(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6628.htm [doi: 10.13328/j.cnki.jos.006628]
    [23] Zhang TC, Tian X, Sun XH, Yu MH, Sun YH, Yu G. Overview on knowledge graph embedding technology research. Ruan Jian Xue Bao/Journal of Software, 2023, 34(1): 277-311(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6429.htm [doi: 10.13328/j.cnki.jos.006429]
    [24] Chen MH, Tian YT, Yang MH, Zaniolo C. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. In: Proc. of the IJCAI. 2017. 1511-1517.
    [25] Sun ZQ, Hu W, Li CK. Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proc. of the ISWC. 2017. 628-644.
    [26] Sun ZQ, Hu W, Zhang QH, Qu YZ. Bootstrapping entity alignment with knowledge graph embedding. In: Proc. of the IJCAI. 2018. 4396-4402.
    [27] Wang ZC, Lv QS, Lan XH, Zhang Y. Cross-lingual knowledge graph alignment via graph convolutional networks. In: Proc. of the EMNLP. 2018. 349-357.
    [28] Trisedya BD, Qi JZ, Zhang R. Entity alignment between knowledge graphs using attribute embeddings. In: Proc. of the AAAI. 2019. 297-304.
    [29] Yang HW, Zou YY, Shi P, Lu W, Lin J, Sun X. Aligning cross-lingual entities with multi-aspect information. In: Proc. of the EMNLP/IJCNLP. 2019. 4430-4440.
    [30] Zeng WX, Zhao X, Tang JY, Lin XM, Groth P. Reinforcement learning-based collective entity alignment with adaptive features. ACM Trans. on Information Systems, 2021, 39(3): 26:1-26:31.
    [31] Tang XB, Zhang J, Chen B, Yang Y, Chen H, Li CP. BERT-INT: A BERT-based interaction model for knowledge graph alignment. In: Proc. of the IJCAI. 2020. 3174-3180.
    [32] Ge CC, Liu XZ, Chen L, Zheng BH, Gao YJ. Make it easy: An effective end-to-end entity alignment framework. In: Proc. of the SIGIR. 2021. 777-786.
    [33] Chen LY, Li Z, Wang YJ, Xu T, Wang ZF, Chen EH. MMEA: Entity alignment for multi-modal knowledge graph. In: Proc. of the KSEM. 2020. 134-147.
    [34] Liu FY, Chen MH, Roth D, Collier N. Visual pivoting for (unsupervised) entity alignment. In: Proc. of the AAAI. 2021. 4257-4266.
    [35] Chen MH, Tian YT, Chang KW, Skiena S, Zaniolo C. Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment. In: Proc. of the IJCAI. 2018. 3998-4004.
    [36] Zeng WX, Zhao X, Tang JY, Tan Z, Wang W. Iterative entity alignment via re-ranking. Journal of Computer Research and Development, 2020, 57(7): 1460-1471(in Chinese with English abstract).
    [37] Sun ZQ, Zhang QH, Hu W, Wang CM, Chen MH, Akrami F, Li CK. A benchmarking study of embedding-based entity alignment for knowledge graphs. Proc. of the VLDB Endowment, 2020, 13(11): 2326-2340.
    [38] Zhao X, Zeng WX, Tang JY, Wang W, Suchanek FM. An experimental study of state-of-the-art entity alignment approaches. IEEE Trans. on Knowledge and Data Engineering, 2022, 34(6): 2610-2625.
    [39] Han YN, Liu JW, Luo XL. Research progress of continual learning. Journal of Computer Research and Development, 2022, 59(6): 1213-1239(in Chinese with English abstract).
    [40] Kirkpatrick J, Pascanu R, Rabinowitz NC, Veness J, Desjardins G, Rusu AA, Milan K, Quan J, Ramalho T, Grabska-Barwinska A, Hassabis D, Clopath C, Kumaran D, Hadsell R. Overcoming catastrophic forgetting in neural networks. PNAS, 2017, 114(13): 3521-3526.
    [41] Lopez-Paz D, Ranzato MA. Gradient episodic memory for continual learning. In: Proc. of the NIPS. 2017. 6467-6476.
    [42] Yoon JH, Yang EH, Lee JT, Hwang SJ. Lifelong learning with dynamically expandable networks. In: Proc. of the ICLR. 2018.
    [43] Daruna AA, Gupta M, Sridharan M, Chernova S. Continual learning of knowledge graph embeddings. IEEE Robotics and Automation Letters, 2021, 6(2): 1128-1135.
    [44] Kou XY, Lin YK, Liu SB, Li P, Zhou J, Zhang Y. Disentangle-based continual graph representation learning. In: Proc. of the EMNLP. 2020. 2961-2972.
    [45] Dong LJ, Zhao DY, Zhang XA, Li XC, Kang XJ, Yao H. Anchors-based incremental embedding for growing knowledge graphs. IEEE Trans. on Knowledge and Data Engineering, 2021.
    [46] Teru KK, Denis EG, Hamilton WL. Inductive relation prediction by subgraph reasoning. In: Proc. of the ICML. 2020. 9448-9457.
    [47] Hamaguchi T, Oiwa H, Shimbo M, Matsumoto Y. Knowledge transfer for out-of-knowledge-base entities: A graph neural network approach. In: Proc. of the IJCAI. 2017. 1802-1808.
    [48] Wang PF, Han JL, Li CL, Pan R. Logic attention based neighborhood aggregation for inductive knowledge graph embedding. In: Proc. of the AAAI. 2019. 7152-7159.
    [49] Hu WH, Liu BW, Gomes J, Zitnik M, Liang P, Pande VS, Leskovec J. Strategies for pre-training graph neural networks. In: Proc. of the ICLR. 2020.
    [50] Fang Y, Zhao X, Chen YF, Xiao WD, de Rijke M. PF-HIN: Pre-training for heterogeneous information networks. IEEE Trans. on Knowledge and Data Engineering, 2022.
    [51] Bollacker KD, Evans C, Paritosh PK, Sturge T, Taylor J. Freebase: A collaboratively created graph database for structuring human knowledge. In: Proc. of the SIGMOD Conf. 2008. 1247-1250.
    [52] Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives ZG. DBpedia: A nucleus for a Web of open data. In: Proc. of the ISWC/ASWC. 2007. 722-735.
    [53] Vrandecic D, Krötzsch M. Wikidata: A free collaborative knowledgebase. Communications of the ACM, 2014, 57(10): 78-85.
    [54] Mahdisoltani F, Biega J, Suchanek FM. YAGO3: A knowledge base from multilingual Wikipedias. In: Proc. of the CIDR. 2015.
    [55] Zhang ZQ, Wang J, Ye JP, Wu F. Rethinking graph convolutional networks in knowledge graph completion. In: Proc. of the WWW. 2022. 798-807.
    [56] Yan YC, Liu LH, Ban YK, Jing BY, Tong HH. Dynamic knowledge graph alignment. In: Proc. of the AAAI. 2021. 4564-4572.
    [57] Toutanova K, Chen DQ. Observed versus latent features for knowledge base and text inference. In: Proc. of the CVSC. 2015. 57-66.
    [58] Miller GA. WordNet: A lexical database for English. Communications of the ACM, 1995, 38(11): 39-41.
    [59] Glorot X, Bengio Y. Understanding the difficulty of training deep feed forward neural networks. In: Proc. of the AISTATS. 2010. 249-256.
    [60] Kingma DP, Ba J. ADAM: A method for stochastic optimization. In: Proc. of the ICLR. 2015.
    [61] Shervashidze N, Schweitzer P, van Leeuwen EJ, Mehlhorn K, Borgwardt KM. Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research, 2011, 12: 2539-2561.
    附中文参考文献:
    [3] 刘知远, 孙茂松, 林衍凯, 谢若冰. 知识表示学习研究进展. 计算机研究与发展, 2016, 53(2): 247-261.
    [10] 方阳, 赵翔, 谭真, 杨世宇, 肖卫东. 一种改进的基于翻译的知识图谱表示方法. 计算机研究与发展, 2018, 55(1): 139-150.
    [22] 张宁豫, 谢辛, 陈想, 邓淑敏, 叶宏彬, 陈华钧. 基于知识协同微调的低资源知识图谱补全方法. 软件学报, 2022, 33(10): 3531-3545. http://www.jos.org.cn/1000-9825/6628.htm [doi: 10.13328/j.cnki.jos.006628]
    [23] 张天成, 田雪, 孙相会, 于明鹤, 孙艳红, 于戈. 知识图谱嵌入技术研究综述. 软件学报, 2023, 34(1): 277-311. http://www.jos.org.cn/1000-9825/6429.htm [doi: 10.13328/j.cnki.jos.006429]
    [36] 曾维新, 赵翔, 唐九阳, 谭真, 王炜. 基于重排序的迭代式实体对齐. 计算机研究与发展, 2020, 57(7): 1460-1471.
    [39] 韩亚楠, 刘建伟, 罗雄麟. 连续学习研究进展. 计算机研究与发展, 2022, 59(6): 1213-1239.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙泽群,崔员宁,胡伟.基于链接实体回放的多源知识图谱终身表示学习.软件学报,2023,34(10):4501-4517

复制
分享
文章指标
  • 点击次数:1473
  • 下载次数: 3769
  • HTML阅读次数: 2491
  • 引用次数: 0
历史
  • 收稿日期:2022-07-05
  • 最后修改日期:2022-08-18
  • 在线发布日期: 2023-01-13
  • 出版日期: 2023-10-06
文章二维码
您是第19728347位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号