基于博弈的加密货币交易市场用户决策优化分析
作者:
作者简介:

毕红亮(1989-),男,博士,助理教授,CCF专业会员,主要研究领域为物联网感知和安全;陈艳姣(1989-),女,博士,教授,CCF专业会员,主要研究领域为计算机网络,网络安全;伊心静(2000-),女,硕士生,主要研究领域为区块链,人工智能安全;汪旭(1996-),男,硕士,主要研究领域为区块链,网络经济学,网络安全

通讯作者:

陈艳姣,E-mail:chenyj.thu@gmail.com

中图分类号:

TP301


Game-based User Decision Optimization Analysis of Cryptocurrency Trading Market
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    近年来, 随着区块链的快速发展, 加密货币种类和匿名交易的类型不断多元化. 如何在加密货币市交易类型中进行最优决策是用户关注的问题, 用户的决策目标是在确保交易被打包的前提下实现交易费用最小化和隐私最大化. 加密货币交易市场是复杂的, 不同的加密货币技术差异大, 现有的工作都是研究比特币市场, 很少有对Zcash等其他匿名币市场和用户的匿名需求的讨论. 因此提出一个基于博弈的通用加密货币交易市场模型, 通过结合用户的匿名需求运用博弈论探究交易市场和用户对于交易类型和交易费用的决策. 以最具代表性的可选隐私加密货币Zcash为例, 结合CoinJoin交易, 对交易市场进行分析, 按照交易流程模拟用户和矿工找到最佳策略的过程, 讨论区块大小、折扣因子和用户数量对交易市场和用户行为的影响. 在多种交易市场类型中对模型进行仿真实验, 并对实验结果进行深入讨论. 以三类型交易市场为例, 交易市场恶性竞价情景下, 参数设置为$plnum = 75$, $\theta {\text{ = }}0.4$, ${s_t} = 100$, ${s_{\textit{z}}} = 400$时, 100%的用户在交易市场前期(前500轮)倾向于选择CoinJoin交易, 而在交易市场中后期(1500–2000轮), 隐私敏感度低于0.7的用户中有97%倾向于选择CoinJoin交易, 隐私敏感度高于0.7的用户中有73%倾向于选择屏蔽交易. CoinJoin交易和大小在400以上的区块大小能有效缓解交易费用的恶性竞争. 所提的交易市场模型能够有效地帮助研究人员理解不同加密货币交易市场博弈, 分析用户交易行为, 揭示市场运行规律.

    Abstract:

    In recent years, with the rapid development of blockchain, the types of cryptocurrencies and anonymous transactions have been increasingly diversified. How to make optimal decisions in the transaction type of cryptocurrency market is the concern of users. The users’ decision-making goal is to minimize transaction costs and maximize privacy while ensuring that transactions are packaged. The cryptocurrency trading market is complex, and cryptocurrency technologies differ greatly from each other. Existing studies focus on the Bitcoin market, and few of them discuss other anonymous currency markets such as Zcash and users’ anonymous demands. Therefore, this study proposes a game-based general cryptocurrency trading market model and explores the trading market and users’ decisions on transaction types and costs by combining the anonymous needs of users and employing game theory. Taking Zcash, the most representative optional cryptocurrency, as an example, it analyzes the trading market in combination with the CoinJoin transaction, simulates the trading process about how users and miners find the optimal strategy, and discusses the impact of block size, discount factors, and the number of users on the trading market and user behaviors. Additionally, the model is simulated in a variety of market types to conduct in-depth discussion of the experimental results. Taking a three-type trading market as an example, in the context of vicious fee competition in the trading market, when plnum = 75, θ= 0.4, st = 100, sz = 400, all users are inclined to choose CoinJoin in the early transaction stage (first 500 rounds). In the middle and late part of the market (1500–2000 rounds), 97% of users with a privacy sensitivity below 0.7 tend to choose CoinJoin, while 73% of users with a privacy sensitivity above 0.7 tend to choose shielded transactions. CoinJoin transactions and block sizes above 400 can alleviate the vicious competition of transaction fees to some extent. The proposed model can help researchers understand the game of different cryptocurrency trading markets, analyze user trading behavior, and reveal market operation rules.

    参考文献
    [1] Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. 2008. https://bitcoin.org/bitcoin.pdf
    [2] Taskinsoy, J. Bitcoin nation: The world’s new 17th largest economy. 2021. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3794634
    [3] 刘敖迪, 杜学绘, 王娜, 李少卓. 区块链技术及其在信息安全领域的研究进展. 软件学报, 2018, 29(7): 2092–2115. http://www.jos.org.cn/1000-9825/5589.htm
    Liu AD, Du XH, Wang N, Li SZ. Research progress of blockchain technology and its application in information security. Ruan Jian Xue Bao/Journal of Software, 2018, 29(7): 2092–2115 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5589.htm
    [4] Bonneau J, Narayanan A, Miller A, Clark J, Kroll JA, Felten EW. Mixcoin: Anonymity for Bitcoin with accountable mixes. In: Proc. of the 18th Int’l Conf. on Financial Cryptography and Data Security. Berlin: Springer, 2014. 486–504.
    [5] Maxwell G. CoinJoin: Bitcoin privacy for the real world. 2013. https://bitcointalk.org/index.php?topic=279249.0
    [6] Duffield E, Diaz D. Dash: A privacy-centric cryptocurrency. Journal of Systems Integration, 2015, (1): 19-31. [doi: 10.20470/jsi.v9i1.335]
    [7] Sasson EB, Chiesa A, Garman C, Green M, Miers I, Tromer E, Virza M. Zerocash: Decentralized anonymous payments from Bitcoin. In: Proc. of the 2014 IEEE Symp. on Security and Privacy. Berkeley: IEEE, 2014. 459–474.
    [8] Arce DG, Böhme R. Pricing anonymity. In: Proc. of the 22nd Int’l Conf. on Financial Cryptography and Data Security. Berlin: Springer, 2018. 349–368.
    [9] Gao S, Li ZC, Peng Z, Xiao B. Power adjusting and bribery racing: Novel mining attacks in the Bitcoin system. In: Proc. of the 2019 ACM SIGSAC Conf. on Computer and Communications Security. London: ACM, 2019. 833–850.
    [10] Eyal I, Sirer EG. Majority is not enough: Bitcoin mining is vulnerable. In: Proc. of the 18th Int’l Conf. on Financial Cryptography and Data Security. Berlin: Springer, 2014. 436–454.
    [11] Lewenberg Y, Bachrach Y, Sompolinsky Y, Zohar A, Rosenschein JS. Bitcoin mining pools: A cooperative game theoretic analysis. In: Proc. of the 2015 Int’l Conf. on Autonomous Agents and Multiagent Systems. Istanbul: Int’l Foundation for Autonomous Agents and Multiagent Systems, 2015. 919–927.
    [12] Carlsten M, Kalodner H, Weinberg SM, Narayanan A. On the instability of Bitcoin without the block reward. In: Proc. of the 2016 ACM SIGSAC Conf. on Computer and Communications Security. Vienna: ACM, 2016. 154–167.
    [13] Möser M, Böhme R. Trends, tips, tolls: A longitudinal study of Bitcoin transaction fees. In: Proc. of the 2015 Int’l Conf. on Financial Cryptography and Data Security. San Juan: Springer, 2015. 19–33.
    [14] Houy N. The economics of Bitcoin transaction fees. GATE WP, 1407, 2014.
    [15] Rizun PR. A transaction fee market exists without a block size limit. 2015. https://www.bitcoinunlimited.info/resources/feemarket.pdf
    [16] Kroll JA, Davey IC, Felten EW. The economics of Bitcoin mining, or Bitcoin in the presence of adversaries. In: Proc. of the 12th Workshop on the Economics of Information Security. Washington DC, 2013. 11.
    [17] Abramova S, Schöttle P, Böhme R. Mixing coins of different quality: A game-theoretic approach. In: Proc. of the 2017 Int’l Conf. on Financial Cryptography and Data Security. Cham: Springer, 2017. 280–297.
    [18] 沈蒙, 桑安琪, 祝烈煌, 孙润庚, 张璨. 基于动机分析的区块链数字货币异常交易行为识别方法. 计算机学报, 2021, 44(1): 193–208. [doi: 10.11897/SP.J.1016.2021.00193]
    Shen M, Sang AQ, Zhu LH, Sun RG, Zhang C. Abnormal transaction behavior recognition based on motivation analysis in Blockchain digital currency. Chinese Journal of Computers, 2021, 44(1): 193–208 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2021.00193]
    [19] Malinova K, Park A. Market design with blockchain technology. 2017. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2785626
    [20] Li JJ, Yuan Y, Wang S, Wang FY. Transaction queuing game in Bitcoin blockchain. In: Proc. of the 2018 IEEE Intelligent Vehicles Symp. (IV). Changshu: IEEE, 2018. 114–119.
    [21] Lavi R, Sattath O, Zohar A. Redesigning Bitcoin’s fee market. In: Proc. of the 2019 World Wide Web Conf. San Francisco: ACM, 2019. 2950–2956.
    [22] Reid F, Harrigan M. An analysis of anonymity in the Bitcoin system. In: Altshuler Y, Elovici Y, Cremers AB, Aharony N, Pentland A, eds. Security and Privacy in Social Networks. New York: Springer, 2013. 197–223.
    [23] 张奥, 白晓颖. 区块链隐私保护研究与实践综述. 软件学报, 2020, 31(5): 1406–1434. http://www.jos.org.cn/1000-9825/5967.htm
    Zhang A, Bai XY. Survey of research and practices on blockchain privacy protection. Ruan Jian Xue Bao/Journal of Software, 2020, 31(5): 1406–1434 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5967.htm
    [24] 王晨旭, 程加成, 桑新欣, 李国栋, 管晓宏. 区块链数据隐私保护: 研究现状与展望. 计算机研究与发展, 2021, 58(10): 2099–2119. [doi: 10.7544/issn1000-1239.2021.20210804]
    Wang CX, Cheng JC, Sang XX, Li GD, Guan XH. Data privacy-preserving for blockchain: State of the art and trends. Journal of Computer Research and Development, 2021, 58(10): 2099–2119 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.2021.20210804]
    [25] Ruffing T, Moreno-Sanchez P, Kate A. CoinShuffle: Practical decentralized coin mixing for Bitcoin. In: Proc. of the 19th European Symp. on Research in Computer Security. Wroclaw: Springer, 2014. 345–364.
    [26] Bissias G, Ozisik AP, Levine BN, Liberatore MD. Sybil-resistant mixing for Bitcoin. In: Proc. of the 13th Workshop on Privacy in the Electronic Society. Scottsdale: ACM, 2014. 149–158.
    [27] Valenta L, Rowan B. Blindcoin: Blinded, accountable mixes for Bitcoin. In: Proc. of the 2015 Int’l Conf. on Financial Cryptography and Data Security. San Juan: Springer, 2015. 112–126.
    [28] Heilman E, Baldimtsi F, Goldberg S. Blindly signed contracts: Anonymous on-blockchain and off-blockchain Bitcoin transactions. In: Proc. of the 2016 Int’l Conf. on Financial Cryptography and Data Security. Christ Church: Springer, 2016. 43–60.
    [29] Kappos G, Yousaf H, Maller M, Meiklejohn S. An empirical analysis of anonymity in Zcash. In: Proc. of the 27th USENIX Conf. on Security Symp. Baltimore: USENIX Association, 2018. 463–477.
    [30] Zhang ZY, Li WH, Liu HT, Liu JW. A refined analysis of zcash anonymity. IEEE Access, 2020, 8: 31845–31853. [doi: 10.1109/ACCESS.2020.2973291]
    [31] Biryukov A, Feher D, Vitto G. Privacy aspects and subliminal channels in Zcash. In: Proc. of the 2019 ACM SIGSAC Conf. on Computer and Communications Security. London: ACM, 2019. 1813–1830.
    [32] Zcash Foundation and Electric Coin Company. Privacy and convenience. 2021. https://z.cash/
    [33] zkSNACKs Ltd. Wasabi wallet-bitcoin privacy wallet with built-in CoinJoin. 2023. https://www.wasabiwallet.io/
    [34] Peleg B, Sudhölter P. Introduction to the Theory of Cooperative Games. Berlin: Springer, 2007.
    [35] Hart S, Mas‐Colell A. A simple adaptive procedure leading to correlated equilibrium. Econometrica, 2000, 68(5): 1127–1150. [doi: 10.1111/1468-0262.00153]
    [36] Castro J, Gómez D, Tejada J. Polynomial calculation of the Shapley value based on sampling. Computers & Operations Research, 2009, 36(5): 1726–1730. [doi: 10.1016/j.cor.2008.04.004]
    [37] Arora S, Hazan E, Kale S. The multiplicative weights update method: A meta-algorithm and applications. Theory of Computing, 2012, 8(1): 121–164. [doi: 10.4086/toc.2012.v008a006]
    [38] Buşoniu L, Babuška R, De Schutter B. Multi-agent reinforcement learning: An overview. In: Srinivasan D, Jain LC, eds. Innovations in Multi-agent Systems and Applications-1. Berlin: Springer, 2010. 183–221.
    [39] Spiegelman A, Keidat I, Tennenholtz M. Game of coins. In: Proc. of the 41st IEEE Int’l Conf. on Distributed Computing Systems (ICDCS). Washington DC: IEEE, 2021. 954–964.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

毕红亮,陈艳姣,伊心静,汪旭.基于博弈的加密货币交易市场用户决策优化分析.软件学报,2023,34(12):5477-5500

复制
分享
文章指标
  • 点击次数:968
  • 下载次数: 2515
  • HTML阅读次数: 1367
  • 引用次数: 0
历史
  • 收稿日期:2022-03-04
  • 最后修改日期:2022-04-26
  • 在线发布日期: 2023-04-13
  • 出版日期: 2023-12-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号