基于多粒度注意力网络的知识超图链接预测
作者:
作者简介:

庞俊(1983-),男,博士,副教授,CCF专业会员,主要研究领域为图数据管理,图挖掘,大数据管理和分析;赵宇海(1975-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为数据库,数据挖掘,机器学习,软件工程,生物信息学;刘小琪(1998-),女,硕士生,CCF学生会员,主要研究领域为知识图谱;张晓龙(1963-),男,博士,教授,博士生导师,主要研究领域为机器学习,图像处理;谷峪(1981-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为图、空间数据管理,大数据分析;于戈(1962-),男,博士,教授,博士生导师,CCF会士,主要研究领域为数据管理理论与技术,分布与并行系统;王鑫(1981-),男,博士,教授,博士生导师,CCF杰出会员,主要研究领域为知识图谱数据管理,图数据库,大规模知识处理.

通讯作者:

庞俊,pangjun@wust.edu.cn

基金项目:

国家重点研发计划(2020AAA0108503);国家自然科学基金(62072083,61972299)


Knowledge Hypergraph Link Prediction Based on Multi-granular Attention Network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [52]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在知识图谱中进行链接预测是图谱补全的有效方法,可以有效地改善知识图谱的数据质量.然而,现实生活中的关系往往是多元的,这些包含多元关系的知识图谱可称为知识超图(knowledge hypergraph,KHG).然而,现有的知识超图链接预测模型忽略了多元关系的平等性(多元关系中实体不存在先后关系)与整体性(多元关系缺少一个实体则不成立).针对以上问题,首先提出了一种知识超图多元关系表示模型,可以直接建模知识超图中的多元关系;然后研究了一种基于多粒度神经网络的链接预测方法(hyperedge prediction based on multi-granular attention network,HPMG).该模型将关系划分为多重粒度进行学习,从不同粒度联合完成知识超图的学习和预测,充分考虑了知识超图中不同维度多元关系的整体性.接下来,针对HPMG特征融合不充分的问题,提出了基于多粒度注意力网络的知识超图链接预测方法HPMG+,结合全局和局部注意力,实现了不同特征的有区分融合,进一步提高了模型的性能.最后,真实数据集上的大量实验结果验证了所提方法的效果显著地优于所有基线方法.

    Abstract:

    Link prediction in knowledge graphs is the most effective method for graph complementation, which can effectively improve the data quality of knowledge graphs. However, the relationships in real life are often multiple, thus these knowledge graphs containing multiple relationships can be called knowledge hypergraphs (KHGs). Unfortunately, the existing knowledge graph link prediction methods cannot be directly applied to knowledge hypergraphs, and the existing knowledge hypergraph link prediction models ignore the equality (there is no sequential relationship among the elements in a multivariate relationship) and completeness (a multivariate relationship is not valid if it lacks elements) of the real-life multivariate relationships. To address these problems, a knowledge hypergraph multivariate representation model is firstly proposed, which can directly model the multivariate relationships in the knowledge hypergraph. Then, a multi-granularity neural network-based hypergraph prediction method (HPMG) is studied, which divides the relations into multiple granularities for learning and prediction from different granularities jointly. Next, to address the problem of inadequate HPMG feature fusion, HPMG+ is proposed based on multi-granularity attention network for link prediction of knowledge hypergraphs, which combines all and local attention to achieve differentiated fusion of different features and further improves the performance of the model. Finally, extensive experimental results on real datasets verify that the proposed methods significantly outperform all baseline methods in terms of hyper-edge prediction.

    参考文献
    [1] Yu CM, Zhang ZG, Kong LG.A comparative study of knowledge graph representation models for link prediction.Data Analysis and Knowledge Discovery, 2021, 5(11):29-44(in Chinese with English abstract).[doi:10.11925/infotech.2096-3467.2021.0491]
    [2] Zhang Y, Meng XF.InterTris:Specific domain knowledge graph representation learning by interaction among triple elements.Chinese Journal of Computers, 2021, 44(8):1535-1548(in Chinese with English abstract).[doi:10.11897/SP.J.1016.2021.01535]
    [3] Wang MH, Qiu LL, Wang XL.A survey on knowledge graph embeddings for link prediction.Symmetry, 2021, 13(3):Article No.485.
    [4] Shu ST, Li S, Hao XH, Zhang LP.Knowledge graph embedding technology:A review.Journal of Frontiers of Computer Science and Technology, 2021, 15(11):2048-2062(in Chinese with English abstract).[doi:10.3778/j.issn.1673-9418.2103086]
    [5] Wang X, Chen WX, Yang YJ, Zhang XW, Feng ZY.Research on knowledge graph partitioning algorithms.Chinese Journal of Computers, 2021, 44(1):235-260(in Chinese with English abstract).[doi:10.11897/SP.J.1016.2021.00235]
    [6] Guan SP, Jin XL, Jia YT, Wang YZ, Cheng XQ.Knowledge reasoning over knowledge graph:A survey.Ruan Jian Xue Bao/Journal of Software, 2018, 29(10):2966-2994(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/5551.htm[doi:10.13328/j.cnki.jos.005551]
    [7] Tian L, Zhang JC, Zhang JH, Zhou WT, Zhou X.Knowledge graph survey:Representation, construction, reasoning and knowledge hypergraph theory.Journal of Computer Applications, 2021, 41(8):2161-2186(in Chinese with English abstract).2161-2186.[doi:10.11772/j.issn.1001-9081.2021040662]
    [8] Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF.Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis.Journal of Receptors and Signal Transduction, 2015, 35(6):600-604.
    [9] Wen JF, Li JX, Mao YY, Chen SN, Zhang RC.On the representation and embedding of knowledge bases beyond binary relations.In:Proc.of the25th Int'l Joint Conf.on Artificial Intelligence.San Francisco:Morgan Kaufmann Publishers, 2016.1300-1307.
    [10] Fatemi B, Taslakian P, Vazquez D, Poole D.Knowledge hypergraphs:Prediction beyond binary relations.In:Proc.of the 29th Int'l Joint Conf.on Artificial Intelligence.San Francisco:Morgan Kaufmann, 2020.2191-2197.
    [11] Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O.Translating embeddings for modeling multi-relational data.In:Proc.of the 27th Annual Conf.on Neural Information Processing Systems.MIT, 2013.2787-2795.
    [12] Wang Z, Zhang JW, Feng JL, Chen Z.Knowledge graph embedding by translating on hyperplanes.In:Proc.of the 28th AAAI Conf.on Artificial Intelligence.Palo Alto:AAAI, 2014.1112-1119.
    [13] Lin YK, Liu ZY, Sun MS, Liu Y, Zhu X.Learning entity and relation embeddings for knowledge graph completion.In:Proc.of the 29th AAAI Conf.on Artificial Intelligence.Palo Alto:AAAI, 2015.2181-2187.
    [14] Fan M, Zhou Q, Chang E, Zheng TF.Transition-based knowledge graph embedding with relational mapping properties.In:Proc.of the 28th Pacific Asia Conf.on Language, Information and Computation.Bangkok:Department of Linguistics, Chulalongkorn University, 2014.328-337.
    [15] Ji GL, He SZ, Xu LH, Liu K, Zhao J.Knowledge graph embedding via dynamic mapping matrix.In:Proc.of the 53rd Annual Meeting of the Association for Computational Linguistics.Stroudsburg:Association for Computational Linguistics, 2015.687-696.
    [16] Jia YT, Wang YZ, Lin HL, Jin XL, Cheng XQ.Locally adaptive translation for knowledge graph embedding.In:Proc.of the 30th AAAI Conf.on Artificial Intelligence.Palo Alto:AAAI, 2016.992-998.
    [17] Ji GL, Liu K, He SZ, Zhao J.Knowledge graph completion with adaptive sparse transfer matrix.In:Proc.of the 30th AAAI Conf.on Artificial Intelligence.Palo Alto:AAAI, 2016.985-991.
    [18] Xiao H, Huang ML, Zhu XY.From one point to a manifold:knowledge graph embedding for precise link prediction.In:Proc.of the 25th Int'l Joint Conf.on Artificial Intelligence.San Francisco:Morgan Kaufmann, 2016.1315-1321.
    [19] Nickel M, Tresp V, Kriegel HP.A three-way model for collective learning on multi-relational data.In:Proc.of the 28th Int'l Conf.on Machine Learning.New York:Association for Computing Machinery, 2011.809-816.
    [20] Nickel M, Rosasco L, Poggio TA.Holographic embeddings of knowledge graphs.In:Proc.of the 30th AAAI Conf.on Artificial Intelligence.Palo Alto:AAAI, 2016.1955-1961.
    [21] Liu HX, Wu YX, Yang YM.Analogical inference for multi-relational embeddings.In:Proc.of the 34th Int'l Conf.on Machine Learning.New York:Association for Computing Machinery, 2017.2168-2178.
    [22] Yang BS, Yih WT, He XD, Gao JF, Deng L.Embedding entities and relations for learning and inference in knowledge bases.In:Proc.of the Int'l Conf.on Learning Representations.San Diego, 2015.
    [23] Trouillon T, Welbl J, Riedel S, Gaussier É, Bouchard G.Complex embeddings for simple link prediction.In:Proc.of the 33nd Int'l Conf.on Machine Learning.New York:Association for Computing Machinery, 2016.2071-2080.
    [24] Balaevi I, Allen C, Hospedales TM.TuckER:Tensor factorization for knowledge graph completion.In:Proc.of the Conf.on Empirical Methods in Natural Language Processing and the 9th Int'l Joint Conf.on Natural Language Processing.Stroudsburg:Association for Computational Linguistics, 2019.5184-5193.
    [25] Jiang XT, Wang Q, Wang B.Adaptive convolution for multi-relational learning.In:Proc.of the Conf.of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Stroudsburg:Association for Computational Linguistics, 2019.978-987.
    [26] Nathani D, Chauhan J, Sharma C, Kaul M.Learning attention-based embeddings for relation prediction in knowledge graphs.In:Proc.of the 57th Conf.of the Association for Computational Linguistics.Stroudsburg:Association for Computational Linguistics, 2019.4710-4723.
    [27] Nguyen DQ, Nguyen TD, Dat QN, Phung DQ.A novel embedding model for knowledge base completion based on convolutional neural network.In:Proc.of the Conf.of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Stroudsburg:Association for Computational Linguistics, 2018.327-333.
    [28] Dettmers T, Minervini P, Stenetorp P, Riedel S.Convolutional 2D knowledge graph embeddings.In:Proc.of the 32nd AAAI Conf.on Artificial Intelligence.Palo Alto:AAAI, 2018.1811-1818.
    [29] Zhang RC, Li JP, Mei JJ, Mao YY.Scalable instance reconstruction in knowledge bases via relatedness affiliated embedding.In:Proc.of the 27th Int'l World Wide Web Conf.New York:Association for Computing Machinery, 2018.1185-1194.
    [30] Wang PY, Duan L, Guo ZS, Jiang WP, Zhang YD.Knowledge hypergraph link prediction model based on tensor decomposition.Journal of Computer Research and Development, 2021, 58(8):1599-1611(in Chinese with English abstract).[doi:10.7544/issn 1000-1239.2021.20210315]
    [31] Liu Y, Yao QM, Li Y.Generalizing tensor decomposition for n-ary relational knowledge bases.In:Proc.of the 29th Int'l World Wide Web Conf.New York:Association for Computing Machinery, 2020.1104-1114.
    [32] Galkin M, Trivedi P, Maheshwari G, Usbeck R, Lehmann J.Message passing for hyper-relational knowledge graphs.In:Proc.of the Conf.on Empirical Methods in Natural Language Processing.Stroudsburg:Association for Computational Linguistics, 2020.7346-7359.
    [33] Liu Y, Yao QM, Li Y.Role-aware modeling for n-ary relational knowledge bases.In:Proc.of the 30th Int'l World Wide Web Conf.New York:Association for Computing Machinery, 2021.2660-2671.
    [34] Guan SP, Jin XL, Wang YZ, Cheng XQ.Link prediction on n-ary relational data.In:Proc.of the 28th Int'l World Wide Web Conf.New York:Association for Computing Machinery, 2019.583-593.
    [35] Guan SP, Jin XL, Guo JF, Wang YZ, Cheng XQ.Link prediction on n-ary relational data based on relatedness evaluation.IEEE Trans.on Knowledge and Data Engineering, 2021, 35(1):672-685.
    [36] Rosso P, Yang DQ, Cudré-Mauroux P.Beyond triplets:Hyper-relational knowledge graph embedding for link prediction.In:Proc.of the 29th Int'l World Wide Web Conf.New York:Association for Computing Machinery, 2020.1885-1896.
    [37] Guan SP, Jin XL, Guo JF, Wang YZ, Cheng XQ.Neuinfer:Knowledge inference on n-ary facts.In:Proc.of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:Association for Computational Linguistics, 2020.6141-6151.
    [38] Kazemi SM, Poole D.Simple embedding for link prediction in knowledge graphs.In:Proc.of the 32th Annual Conf.on Neural Information Processing Systems.MIT, 2018.4289-4300.
    [39] Tucker L.Some mathematical notes on three-mode factor analysis.Psychometrika, 1966, 31(3):279-311.
    [40] Zhao QB, Zhou GX, Xie SL, Zhang LQ, Cichocki A.Tensor ring decomposition.arXiv:1606.05535, 2016.
    [41] Zhang RC, Zou YS, Ma J, Hyper-SAGNN:A self-attention based graph neural network for hypergraphs.In:Proc.of the Int'l Conf.on Learning Representations.2020.
    [42] Xu YW, Zhang HJ, Cheng K, Liao XL, Zhang ZX, Li YB.Knowledge graph embedding with entity attributes using hyper graph neural networks.Intelligent Data Analysis, 2022, 26(4):959-975.
    [43] Yan BC, Wang CK, Guo GY, Lou YK.TinyGNN:Learning efficient graph neural networks.In:Proc.of the 26th ACMSIGKDD Int'l Conf.on Knowledge Discovery & Data Mining.2020.1848-1856.
    [44] Dai YM, Gieseke F, Oehmcke S, Wu YQ, Barnard K.Attentional feature fusion.In:Proc.of the IEEE/CVF Winter Conf.on Applications of Computer Vision.2021.3560-3569.
    附中文参考文献
    [1] 余传明, 张贞港, 孔令格.面向链接预测的知识图谱表示模型对比研究.数据分析与知识发现, 2021, 5(11):29-44.[doi:10.11925/infotech.2096-3467.2021.0491]
    [2] 张祎,孟小峰.InterTris:三元交互的领域知识图谱表示学习.计算机学报, 2021, 44(8):1535-1548.[doi:10.11897/SP.J.1016.2021.01535]
    [4] 舒世泰, 李松, 郝晓红, 张丽平.知识图谱嵌入技术研究进展.计算机科学与探索, 2021, 15(11):2048-2062.[doi:10.3778/j.issn.1673-9418.2103086]
    [5] 王鑫,陈蔚雪, 杨雅君, 张小旺, 冯志勇.知识图谱划分算法研究综述.计算机学报, 2021, 44(1):235-260.[doi:10.11897/SP.J.1016.2021.00235]
    [6] 官赛萍, 靳小龙, 贾岩涛, 王元卓, 程学旗.面向知识图谱的知识推理研究进展.软件学报, 2018, 29(10):2966-2994.http://www.jos.org.cn/1000-9825/5551.htm[doi:10.13328/j.cnki.jos.005551]
    [7] 田玲,张谨川, 张晋豪, 周望涛, 周雪.知识图谱综述——表示、构建、推理与知识超图理论.计算机应用, 2021, 41(8):2161-2186.[doi:10.11772/j.issn.1001-9081.2021040662]
    [30] 王培妍, 段磊,郭正山, 蒋为鹏, 张译丹.基于张量分解的知识超图链接预测模型.计算机研究与发展, 2021, 58(8):1599-1611.[doi:10.7544/issn1000-1239.2021.20210315]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

庞俊,刘小琪,谷峪,王鑫,赵宇海,张晓龙,于戈.基于多粒度注意力网络的知识超图链接预测.软件学报,2023,34(3):1259-1276

复制
分享
文章指标
  • 点击次数:1802
  • 下载次数: 4202
  • HTML阅读次数: 2952
  • 引用次数: 0
历史
  • 收稿日期:2022-05-15
  • 最后修改日期:2022-09-07
  • 在线发布日期: 2022-10-26
  • 出版日期: 2023-03-06
文章二维码
您是第19769268位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号