预训练模型特征提取的双对抗磁共振图像融合网络研究
CSTR:
作者:
作者单位:

作者简介:

刘慧(1978-),女,博士,教授,博士生导师,主要研究领域为图像处理,数据挖掘与可视化;李珊珊(1997-),女,硕士生,主要研究领域为机器学习,多模态医学图像融合;高珊珊(1980-),女,博士,教授,博士生导师,CCF专业会员,主要研究领域为智能图形图像处理,数据挖掘与可视化;邓凯(1981-),男,博士,主任医师,主要研究领域为医学图像诊断;徐岗(1981-),男,博士,教授,博士生导师,主要研究领域为智能图形图像处理,几何计算与仿真;张彩明(1955-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为计算机图形学,计算机视觉,医学影像处理,时序数据分析.

通讯作者:

张彩明,czhang@sdu.edu.cn

中图分类号:

基金项目:

国家自然科学基金(62072274,U1909210);山东省科技成果转移转化项目(2021LYXZ011);浙江省重点研发计划(2021C01108)


Research on Dual-adversarial MR Image Fusion Network Using Pre-trained Model for Feature Extraction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着多模态医学图像在临床诊疗工作中的普及,建立在时空相关性特性基础上的融合技术得到快速发展,融合后的医学图像不仅可以保留各模态源图像的独有特征,而且能够强化互补信息、便于医生阅片.目前大多数方法采用人工定义约束的策略来实现特征提取和特征融合,这容易导致融合图像中部分有用信息丢失和细节不清晰等问题.为此,提出一种基于预训练模型特征提取的双对抗融合网络实现MR-T1/MR-T2图像的融合.该网络由一个特征提取模块、一个特征融合模块和两个鉴别网络模块组成.由于已配准的多模态医学图像数据集规模较小,无法对特征提取网络进行充分的训练,又因预训练模型具有强大的数据表征能力,故将预先训练的卷积神经网络模型嵌入到特征提取模块以生成特征图.然后,特征融合网络负责融合深度特征并输出融合图像.两个鉴别网络通过对源图像与融合图像进行准确分类,分别与特征融合网络建立对抗关系,最终激励其学习出最优的融合参数.实验结果证明了预训练技术在所提方法中的有效性,同时与现有的6种典型融合方法相比,所提方法融合结果在视觉效果和量化指标方面均取得最优表现.

    Abstract:

    With the popularization of multimodal medical images in clinical diagnosis and treatment, fusion technology based on spatiotemporal correlation characteristics has been developed rapidly. The fused medical images not only retain the unique features of source images with various modalities but also strengthen the complementary information, which can facilitate image reading. At present, most methods perform feature extraction and feature fusion by manually defining constraints, which can easily lead to the loss of useful information and unclear details in the fused images. In light of this, a dual-adversarial fusion network using a pre-trained model for feature extraction is proposed in this study to fuse MR-T1/MR-T2 images. The network consists of a feature extraction module, a feature fusion module, and two discriminator network modules. Due to the small scale of the registered multimodal medical image dataset, the feature extraction network cannot be fully trained. In addition, as the pre-trained model has powerful data representation ability, a pre-trained convolutional neural network model is embedded into the feature extraction module to generate the feature map. Then, the feature fusion network fuses the deep features and outputs fused images. Through accurate classification of the source and fused images, the two discriminator networks establish adversarial relations with the feature fusion network separately and eventually encourage it to learn the optimal fusion parameters. The experimental results illustrate the effectiveness of pre-trained technology in this method. Compared with six existing typical fusion methods, the proposed method can generate the fused results of optimal performance in visual effects and quantitative metrics.

    参考文献
    相似文献
    引证文献
引用本文

刘慧,李珊珊,高珊珊,邓凯,徐岗,张彩明.预训练模型特征提取的双对抗磁共振图像融合网络研究.软件学报,2023,34(5):2134-2151

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-18
  • 最后修改日期:2022-05-29
  • 录用日期:
  • 在线发布日期: 2022-09-20
  • 出版日期: 2023-05-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号