从Docker容器看容器技术的发展: 一种系统文献综述的视角
作者:
作者简介:

吴逸文(1996-),女,博士生,CCF学生会员,主要研究领域为实证软件工程,容器运维,数据挖掘;张洋(1991-),男,博士,助理研究员,CCF专业会员,主要研究领域为实证软件工程,开发运维一体化;王涛(1984-),男,博士,副研究员,主要研究领域为软件工程,机器学习,数据挖掘;王怀民(1962-),男,博士,教授,博士生导师,CCF会士,主要研究领域为软件工程,分布式计算,云际计算

通讯作者:

张洋,E-mail:yangzhang15@nudt.edu.cn

基金项目:

科技创新2030—“新一代人工智能”重大项目(2021ZD0112904); 国防科技重点实验室基金(2021-KJWPDL-06)


Development Exploration of Container Technology Through Docker Containers: A Systematic Literature Review Perspective
Author:
  • WU Yi-Wen

    WU Yi-Wen

    Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China;College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China;Laboratory of Software Engineering for Complex Systems, Changsha 410073, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Yang

    ZHANG Yang

    Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China;College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China;Laboratory of Software Engineering for Complex Systems, Changsha 410073, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Tao

    WANG Tao

    Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China;College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China;Laboratory of Software Engineering for Complex Systems, Changsha 410073, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Huai-Min

    WANG Huai-Min

    Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China;College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China;Laboratory of Software Engineering for Complex Systems, Changsha 410073, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [104]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    近些年, 软件构造、运行和演化过程面临着诸多新需求, 例如开发测试环境需要高效切换或配置、应用隔离、减少资源消耗、提高测试和部署效率等, 给开发人员开发和维护软件带来了巨大的负担. 容器技术有希望将开发人员从繁重的开发运维负担中解脱出来, 尤其是Docker作为目前工业界的容器行业标准, 近年来逐渐成为学术界一个热门的研究领域. 为了帮助研究人员全面准确地理解当前Docker容器研究的现状和趋势, 使用系统文献综述(systematic literature review)的方法搜集了75篇该领域最新的高水平论文, 进行了详细的分析和总结. 首先, 使用定量研究方法调查了Docker容器研究的基本现状, 包括研究数量、研究质量、研究领域和研究方式. 其次, 首次提出了面向Docker容器研究的分类框架, 分别从核心、平台和支持3个方面对当前研究进行了系统性地归纳和梳理. 最后, 讨论了Docker容器技术的发展趋势并总结了7个未来的研究方向.

    Abstract:

    In recent years, software construction, operation, and evolution have encountered many new requirements, such as the need for efficient switching or configuration in development and testing environments, application isolation, resource consumption reduction, and higher efficiency of testing and deployment. These requirements pose great challenges to developers in developing and maintaining software. Container technology has the potential of releasing developers from the heavy workload of development and maintenance. Of particular note, Docker, as the de facto industrial standard for containers, has recently become a popular research area in the academic community. To help researchers understand the status and trends of research on Docker containers, this study conducts a systematic literature review by collecting 75 high-level papers in this field. First, quantitative methods are used to investigate the basic status of research on Docker containers, including research quantity, research quality, research areas, and research methods. Second, the first classification framework for research on Docker containers is presented in this study, and the current studies are systematically classified and reviewed from the dimensions of the core, platform, and support. Finally, the development trends of Docker container technology are discussed, and seven future research directions are summarized.

    参考文献
    [1] Anderson C. Docker [software engineering]. IEEE Software, 2015, 32(3): 102–105. [doi: 10.1109/MS.2015.62]
    [2] Boettiger C. An introduction to docker for reproducible research. ACM SIGOPS Operating Systems Review, 2015, 49(1): 71–79. [doi: 10.1145/2723872.2723882]
    [3] Bernstein D. Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud Computing, 2014, 1(3): 81–84. [doi: 10.1109/MCC.2014.51]
    [4] Chae M, Lee H, Lee K. A performance comparison of linux containers and virtual machines using docker and KVM. Cluster Computing, 2019, 22(S1): 1765–1775. [doi: 10.1007/s10586-017-1511-2]
    [5] Zhang Y, Yin G, Wang T, Yu Y, Wang HM. An insight into the impact of Dockerfile evolutionary trajectories on quality and latency. In: Proc. of the 42nd Annual Computer Software and Applications Conf. (COMPSAC). Tokyo: IEEE, 2018. 138–143.
    [6] Mavridis I, Karatza H. Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems, 2019, 94: 674–696. [doi: 10.1016/j.future.2018.12.035]
    [7] Shirinbab S, Lundberg L, Casalicchio E. Performance evaluation of containers and virtual machines when running cassandra workload concurrently. Concurrency and Computation: Practice and Experience, 2020, 32(17): e5693. [doi: 10.1002/cpe.5693]
    [8] Kratzke N, Quint PC. Understanding cloud-native applications after 10 years of cloud computing - a systematic mapping study. Journal of Systems and Software, 2017, 126: 1–16. [doi: 10.1016/j.jss.2017.01.001]
    [9] Fokaefs M, Barna C, Veleda R, Litoiu M, Wigglesworth J, Mateescu R. Enabling DevOps for containerized data-intensive applications: An exploratory study. In: Proc. of the 26th Annual Int’l Conf. on Computer Science and Software Engineering. Toronto: ACM, 2016. 138–148.
    [10] Zhang Y, Vasilescu B, Wang HM, Filkov V. One size does not fit all: An empirical study of containerized continuous deployment workflows. In: Proc. of the 26th ACM Joint Meeting on European Software Engineering Conf. and Symp. on the Foundations of Software Engineering (ESEC/FSE). Lake Buena Vista: ACM, 2018. 295–306.
    [11] Singh C, Gaba NS, Kaur M, Kaur B. Comparison of different CI/CD tools integrated with cloud platform. In: Proc. of the 9th Int’l Conf. on Cloud Computing, Data Science & Engineering. Noida: IEEE, 2019. 7–12.
    [12] Merkel D. Docker: Lightweight linux containers for consistent development and deployment. Linux Journal, 2014, 2014(239): 2.
    [13] Cito J, Schermann G, Wittern JE, Leitner P, Zumberi S, Gall HC. An empirical analysis of the Docker container ecosystem on GitHub. In: Proc. of the 14th Int’l Conf. on Mining Software Repositories (MSR). Buenos Aires: IEEE, 2017. 323–333.
    [14] Dua R, Raja AR, Kakadia D. Virtualization vs. containerization to support PaaS. In: Proc. of the Int’l Conf. on Cloud Engineering. Boston: IEEE, 2014. 610–614.
    [15] Flexera. 2021 state of the cloud report. 2021. https://www.flexera.com/about-us/press-center/flexera-releases-2021-state-of-the-cloud-report
    [16] Casalicchio E, Iannucci S. The state-of-the-art in container technologies: Application, orchestration and security. Concurrency and Computation: Practice and Experience, 2020, 32(17): e5668. [doi: 10.1002/cpe.5668]
    [17] Morabito R, Farris I, Iera A, Taleb T. Evaluating performance of containerized iot services for clustered devices at the network edge. IEEE Internet of Things Journal, 2017, 4(4): 1019–1030. [doi: 10.1109/JIOT.2017.2714638]
    [18] Do Espírito Santo W, de Souza Matos Júnior R, de Ribamar Lima Ribeiro A, Silva DS, Santos R. Systematic mapping on orchestration of container-based applications in fog computing. In: Proc. of the 15th Int’l Conf. on Network and Service Management (CNSM). Halifax: IEEE, 2019. 1–7.
    [19] Simonis I. Container-based architecture to optimize the integration of microservices into cloud-based data-intensive application scenarios. In: Proc. of the 12th European Conf. on Software Architecture: Companion Proc. Madrid: ACM, 2018. 1–3.
    [20] Budgen D, Brereton P. Performing systematic literature reviews in software engineering. In: Proc. of the 28th Int’l Conf. on Software Engineering (ICSE). Shanghai: ACM, 2006. 1051–1052.
    [21] Kitchenham B. Procedures for performing systematic reviews. Technical Report, Keele: Keele University, 2004.
    [22] Chen LP, Babar MA, Zhang H. Towards an evidence-based understanding of electronic data sources. In: Proc. of the 14th Int’l Conf. on Evaluation and Assessment in Software Engineering. Keele: ACM, 2010. 135–138.
    [23] Wohlin C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: Proc. of the 18th Int’l Conf. on Evaluation and Assessment in Software Engineering. London: ACM, 2014. 38.
    [24] Brereton P, Kitchenham BA, Budgen D, Turner M, Khalil M. Lessons from applying the systematic literature review process within the software engineering domain. Journal of Systems and Software, 2007, 80(4): 571–583. [doi: 10.1016/j.jss.2006.07.009]
    [25] Pahl C, Brogi A, Soldani J, Jamshidi P. Cloud container technologies: A state-of-the-art review. IEEE Transactions on Cloud Computing, 2019, 7(3): 677–692. [doi: 10.1109/TCC.2017.2702586]
    [26] Docker. Docker overview. 2023. https://docs.docker.com/get-started/overview/
    [27] Tony. Docker ecosystem one: Container core technology. 2022. https://blog.devgenius.io/docker-ecosystem-one-container-core-technology-28bf5bbf795e
    [28] Tony. Docker ecosystem two: Container platform technology. 2022. https://blog.devgenius.io/docker-ecosystem-two-container-plat-form-technology-4f0714101c99
    [29] Tony. Docker ecosystem three: Container support technology. 2022. https://blog.devgenius.io/docker-ecosystem-three-container-support-technology-6c2ff98dbdd6
    [30] Viera AJ, Garrett JM. Understanding interobserver agreement: The kappa statistic. Family Medicine, 2005, 37(5): 360–363.
    [31] Wu YW, Zhang Y, Wang T, Wang HM. Dockerfile changes in practice: A large-scale empirical study of 4110 projects on GitHub. In: Proc. of the 27th Asia-Pacific Software Engineering Conf. (APSEC). Singapore: IEEE, 2020. 247–256.
    [32] Kozhirbayev Z, Sinnott RO. A performance comparison of container-based technologies for the cloud. Future Generation Computer Systems, 2017, 68: 175–182. [doi: 10.1016/j.future.2016.08.025]
    [33] Wu Y, Chen HP. ABP scheduler: Speeding up service spread in Docker swarm. In: Proc. of the 2017 IEEE Int’l Symp. on Parallel and Distributed Processing with Applications and the 2017 IEEE Int’l Conf. on Ubiquitous Computing and Communications (ISPA/IUCC). Guangzhou: IEEE, 2017. 691–698.
    [34] Al-Dhuraibi Y, Paraiso F, Djarallah N, Merle P. Autonomic vertical elasticity of Docker containers with ElasticDocker. In: Proc. of the 10th IEEE Int’l Conf. on Cloud Computing (CLOUD). Honololu: IEEE, 2017. 472–479.
    [35] Higgins J, Holmes V, Venters C. Autonomous discovery and management in virtual container clusters. The Computer Journal, 2017, 60(2): 240–252. [doi: 10.1093/comjnl/bxw102]
    [36] Wan XL, Guan XJ, Wang TJ, Bai GW, Choi BY. Application deployment using microservice and docker containers: Framework and optimization. Journal of Network and Computer Applications, 2018, 119: 97–109. [doi: 10.1016/j.jnca.2018.07.003]
    [37] Martin A, Raponi S, Combe T, Di Pietro R. Docker ecosystem – vulnerability analysis. Computer Communications, 2018, 122: 30–43. [doi: 10.1016/j.comcom.2018.03.011]
    [38] Xu QQ, Jin C, Rasid MFBM, Veeravalli B, Aung KMM. Blockchain-based decentralized content trust for docker images. Multimedia Tools and Applications, 2018, 77(14): 18223–18248. [doi: 10.1007/s11042-017-5224-6]
    [39] Imdoukh M, Ahmad I, Alfailakawi MG. Machine learning-based auto-scaling for containerized applications. Neural Computing and Applications, 2020, 32(13): 9745–9760. [doi: 10.1007/s00521-019-04507-z]
    [40] Oumaziz MA, Falleri JR, Blanc X, Bissyandé TF, Klein J. Handling duplicates in Dockerfiles families: Learning from experts. In: Proc. of the 2019 IEEE Int’l Conf. on Software Maintenance and Evolution (ICSME). Cleveland: IEEE, 2019. 524–535.
    [41] Eng K, Hindle A. Revisiting Dockerfiles in open source software over time. In: Proc. of the 18th IEEE/ACM Int’l Conf. on Mining Software Repositories (MSR). Madrid: IEEE, 2021. 449–459.
    [42] Horton E, Parnin C. DockerizeMe: Automatic inference of environment dependencies for python code snippets. In: Proc. of the 41st IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Montreal: IEEE, 2019. 328–338.
    [43] Kitajima S, Sekiguchi A. Latest image recommendation method for automatic base image update in Dockerfile. In: Proc. of the 18th Int’l Conf. on Service-oriented Computing. Dubai: Springer, 2020. 547–562.
    [44] Wu YW, Zhang Y, Chang JS, Ding B, Wang T, Wang HM. Using configuration semantic features and machine learning algorithms to predict build result in cloud-based container environment. In: Proc. of the 26th IEEE Int’l Conf. on Parallel and Distributed Systems (ICPADS). Hong Kong: IEEE, 2020. 248–255.
    [45] Henkel J, Bird C, Lahiri SK, Reps T. Learning from, understanding, and supporting devops artifacts for Docker. In: Proc. of the 42nd IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Seoul: IEEE, 2020. 38–49.
    [46] Henkel J, Silva D, Teixeira L, D’Amorim M, Reps T. Shipwright: A human-in-the-loop system for Dockerfile repair. In: Proc. of the 43rd IEEE/ACM Int’l Conf. on Software Engineering. Madrid: IEEE, 2021. 198–199.
    [47] Piedade B, Dias JP, Correia FF. An empirical study on visual programming Docker compose configurations. In: Proc. of the 23rd ACM/IEEE Int’l Conf. on Model Driven Engineering Languages and Systems: Companion Proc. New York: ACM, 2020. 60.
    [48] Ibrahim MH, Sayagh M, Hassan AE. A study of how docker compose is used to compose multi-component systems. Empirical Software Engineering, 2021, 26(6): 128. [doi: 10.1007/S10664-021-10025-1]
    [49] Ksontini E, Kessentini M, Ferreira TDN, Hassan F. Refactorings and technical debt in Docker projects: An empirical study. In: Proc. of the 36th IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE). Melbourne: IEEE, 2021. 781–791.
    [50] Lin CY, Nadi S, Khazaei H. A large-scale data set and an empirical study of Docker images hosted on Docker hub. In: Proc. of the 2020 IEEE Int’l Conf. on Software Maintenance and Evolution (ICSME). Adelaide: IEEE, 2020. 371–381.
    [51] Ibrahim MH, Sayagh M, Hassan AE. Too many images on DockerHub! How different are images for the same system? Empirical Software Engineering, 2020, 25(5): 4250–4281.
    [52] D’Urso F, Santoro C, Santoro FF. Wale: A solution to share libraries in docker containers. Future Generation Computer Systems, 2019, 100: 513–522. [doi: 10.1016/j.future.2019.03.049]
    [53] Gkikopoulos P, Schiavoni V, Spillner J. Analysis and improvement of heterogeneous hardware support in Docker images. In: Proc. of the 2021 IFIP Int’l Conf. on Distributed Applications and Interoperable Systems. Valletta: Springer, 2021. 125–142.
    [54] Anwar A, Mohamed M, Tarasov V, Littley M, Rupprecht L, Cheng Y, Zhao NN, Skourtis D, Warke AS, Ludwig H, Hildebrand D, Butt AR. Improving Docker registry design based on production workload analysis. In: Proc. of the 16th USENIX Conf. on File and Storage Technologies (FAST). Oakland: ACM, 2018. 265–278.
    [55] Littley M, Anwar A, Fayyaz H, Fayyaz Z, Tarasov V, Rupprecht L, Skourtis D, Mohamed M, Ludwig H, Cheng Y, Butt AR. Bolt: Towards a scalable Docker registry via hyperconvergence. In: Proc. of the 12th IEEE Int’l Conf. on Cloud Computing (CLOUD). Milan: IEEE, 2019. 358–366.
    [56] Rastogi V, Davidson D, De Carli L, Jha S, McDaniel P. Cimplifier: Automatically debloating containers. In: Proc. of the 11th Joint Meeting on Foundations of Software Engineering. Paderborn: ACM, 2017. 476–486.
    [57] Yin K, Chen W, Zhou JH, Wu GQ, Wei J. STAR: A specialized tagging approach for Docker repositories. In: Proc. of the 25th Asia-Pacific Software Engineering Conf. (APSEC). Nara: IEEE, 2018. 426–435.
    [58] Chen W, Zhou JH, Zhu JX, Wu GQ, Wei J. Semi-supervised learning based tag recommendation for docker repositories. Journal of Computer Science and Technology, 2019, 34(5): 957–971. [doi: 10.1007/s11390-019-1954-4]
    [59] Zhao NN, Tarasov V, Albahar H, Anwar A, Rupprecht L, Skourtis D, Paul AK, Chen KR, Butt AR. Large-scale analysis of docker images and performance implications for container storage systems. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(4): 918–930. [doi: 10.1109/TPDS.2020.3034517]
    [60] Li L, Tang T, Chou W. A REST service framework for fine-grained resource management in container-based cloud. In: Proc. of the 8th IEEE Int’l Conf. on Cloud Computing. New York: IEEE, 2015. 645–652.
    [61] Huang H, Rao J, Wu S, Jin H, Suo K, Wu X. Adaptive resource views for containers. In: Proc. of the 28th Int’l Symp. on High-performance Parallel and Distributed Computing. Phoenix: ACM, 2019. 243–254.
    [62] Mao Y, Oak J, Pompili A, Beer D, Han T, Hu PZ. DRAPS: Dynamic and resource-aware placement scheme for Docker containers in a heterogeneous cluster. In: Proc. of the 36th IEEE Int’l Performance Computing and Communications Conf. (IPCCC). San Diego: IEEE, 2017. 1–8.
    [63] Alzahrani EJ, Tari Z, Lee YC, Alsadie D, Zomaya AY. AdCFS: Adaptive completely fair scheduling policy for containerised workflows systems. In: Proc. of the 16th IEEE Int’l Symp. on Network Computing and Applications (NCA). Cambridge: IEEE, 2017. 1–8.
    [64] Menouer T, Cérin C, Leclercq É. New multi-objectives scheduling strategies in Docker SwarmKit. In: Proc. of the 18th Int’l Conf. on Algorithms and Architectures for Parallel Processing. Guangzhou: Springer, 2018. 103–117.
    [65] Zhang WW, Liu Y, Wang L, Li ZX, Mong Goh RS. Cost-efficient and latency-aware workflow scheduling policy for container-based systems. In: Proc. of the 24th IEEE Int’l Conf. on Parallel and Distributed Systems (ICPADS). Singapore: IEEE, 2018. 763–770.
    [66] Mendes S, Simão J, Veiga L. Oversubscribing micro-clouds with energy-aware containers scheduling. In: Proc. of the 34th ACM/SIGAPP Symp. on Applied Computing. Limassol: ACM, 2019. 130–137.
    [67] Hamdi N, Chainbi W. A multi-weight strategy for container consolidation. In: Proc. of the 4th IEEE Int’l Conf. on Fog and Edge Computing (ICFEC). Melbourne: IEEE, 2020. 11–18.
    [68] Barlaskar E, Kilpatrick P, Spence I, Nikolopoulos DS. Using Docker swarm with a user-centric decision-making framework for cloud application migration. In: Proc. of the 7th Int’l Conf. on Cloud Computing and Services Science. Porto: Springer, 2017. 81–101.
    [69] Xu B, Wu S, Xiao J, Jin H, Zhang YX, Shi GQ, Lin TY, Rao J, Yi L, Jiang JZ. Sledge: Towards efficient live migration of Docker containers. In: Proc. of the 13th IEEE Int’l Conf. on Cloud Computing (CLOUD). Beijing: IEEE, 2020. 321–328.
    [70] Peinl R, Holzschuher F, Pfitzer F. Docker cluster management for the cloud - survey results and own solution. Journal of Grid Computing, 2016, 14(2): 265–282. [doi: 10.1007/s10723-016-9366-y]
    [71] Hoenisch P, Weber I, Schulte S, Zhu LM, Fekete A. Four-fold auto-scaling on a contemporary deployment platform using Docker containers. In: Proc. of the 13th Int’l Conf. on Service-oriented Computing. India: Springer, 2015. 316–323.
    [72] De Alfonso C, Calatrava A, Moltó G. Container-based virtual elastic clusters. Journal of Systems and Software, 2017, 127: 1–11. [doi: 10.1016/j.jss.2017.01.007]
    [73] Rossi F, Nardelli M, Cardellini V. Horizontal and vertical scaling of container-based applications using reinforcement learning. In: Proc. of the 12th IEEE Int’l Conf. on Cloud Computing (CLOUD). Milan: IEEE, 2019. 329–338.
    [74] Brogi A, Neri D, Rinaldi L, Soldani J. Orchestrating incomplete tosca applications with docker. Science of Computer Programming, 2018, 166: 194–213. [doi: 10.1016/j.scico.2018.07.005]
    [75] Mohamed M, Engel R, Warke A, Berman S, Ludwig H. Extensible persistence as a service for containers. Future Generation Computer Systems, 2019, 97: 10–20. [doi: 10.1016/j.future.2018.12.015]
    [76] 张浩, 孙毓忠, 肖立, 唐勇, 胡满满, 杜沁园, 蔡志彬, 冯百明. RainbowD: 一种异构云环境下高效的Docker镜像分发系统. 计算机学报, 2020, 43(11): 2067–2083. [doi: 10.11897/SP.J.1016.2020.02067]
    Zhang H, Sun YZ, Xiao L, Tang Y, Hu MM, Du QY, Cai ZB, Feng BM. RainbowD: A heterogeneous cloud-oriented efficient docker image distribution system. Chinese Journal of Computers, 2020, 43(11): 2067–2083 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2020.02067]
    [77] Harter T, Salmon B, Liu R, Arpaci-Dusseau AC, Arpaci-Dusseau RH. Slacker: Fast distribution with lazy Docker containers. In: Proc. of the 14th USENIX Conf. on File and Storage Technologies (FAST). Santa Clara: ACM, 2016. 181–195.
    [78] Du L, Wo TY, Yang RY, Hu CM. Cider: A rapid Docker container deployment system through sharing network storage. In: Proc. of the 19th IEEE Int’l Conf. on High Performance Computing and Communications; the 15th IEEE Int’l Conf. on Smart City; the 3rd IEEE Int’l Conf. on Data Science and Systems. Bangkok: IEEE, 2018. 332–339.
    [79] Gu L, Tang QZ, Wu S, Jin H, Zhang YX, Shi GQ, Lin TY, Rao J. N-docker: A NVM-HDD hybrid Docker storage framework to improve Docker performance. In: Proc. of the 16th IFIP Int’l Conf. on Network and Parallel Computing. Hohhot: Springer, 2019. 182–194.
    [80] Ahmed A, Pierre G. Docker image sharing in distributed fog infrastructures. In: Proc. of the 2019 IEEE Int’l Conf. on Cloud Computing Technology and Science (CloudCom). Sydney: IEEE, 2019. 135–142.
    [81] Nguyen TL, Nou R, Lebre A. YOLO: Speeding up VM and Docker boot time by reducing I/O operations. In: Proc. of the 25th Int’l Conf. on Euro-Par 2019: Parallel Processing. Göttingen: Springer, 2019. 273–287.
    [82] 陆志刚, 徐继伟, 黄涛. 基于分片复用的多版本容器镜像加载方法. 软件学报, 2020, 31(6): 1875–1888. http://www.jos.org.cn/1000-9825/5816.htm
    Lu ZG, Xu JW, Huang T. Container image deduplication method based on chunking reuse of multi-versions. Ruan Jian Xue Bao/Journal of Software, 2020, 31(6): 1875–1888 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5816.htm
    [83] Paraiso F, Challita S, Al-Dhuraibi Y, Merle P. Model-driven management of Docker containers. In: Proc. of the 9th IEEE Int’l Conf. on Cloud Computing (CLOUD). San Francisco: IEEE, 2016. 718–725.
    [84] Jha DN, Garg S, Jayaraman PP, Buyya R, Li Z, Ranjan R. A holistic evaluation of Docker containers for interfering microservices. In: Proc. of the 2018 IEEE Int’l Conf. on Services Computing (SCC). San Francisco: IEEE, 2018. 33–40.
    [85] Zerouali A, Mens T, Robles G, Gonzalez-Barahona JM. On the relation between outdated Docker containers, severity vulnerabilities, and bugs. In: Proc. of the 26th IEEE Int’l Conf. on Software Analysis, Evolution and Reengineering. Hangzhou: IEEE, 2019. 491–501.
    [86] Zerouali A, Mens T, Decan A, Gonzalez-Barahona J, Robles G. A multi-dimensional analysis of technical lag in debian-based docker images. Empirical Software Engineering, 2021, 26(2): 19. [doi: 10.1007/s10664-020-09908-6]
    [87] Zerouali A, Mens T, De Roover C. On the usage of JavaScript, Python and Ruby packages in docker hub images. Science of Computer Programming, 2021, 207: 102653. [doi: 10.1016/j.scico.2021.102653]
    [88] Liu PY, Ji SL, Fu LR, Lu KJ, Zhang XH, Lee WH, Lu T, Chen WZ, Beyah R. Understanding the security risks of Docker hub. In: Proc. of the 25th European Symp. on Research in Computer Security on Computer Security. Guildford: Springer, 2020. 257–276.
    [89] Zhang MW, Marino D, Efstathopoulos P. Harbormaster: Policy enforcement for containers. In: Proc. of the 7th IEEE Int’l Conf. on Cloud Computing Technology and Science (CloudCom). Vancouver: IEEE, 2015. 355–362.
    [90] Tak B, Kim H, Suneja S, Isci C, Kudva P. Security analysis of container images using cloud analytics framework. In: Proc. of the 25th Int’l Conf. on Web Services. Seattle: Springer, 2018. 116–133.
    [91] Fernandez GP, Brito A. Secure container orchestration in the cloud: Policies and implementation. In: Proc. of the 34th ACM/SIGAPP Symp. on Applied Computing. Limassol: ACM, 2019. 138–145.
    [92] Gantikow H, Reich C, Knahl M, Clarke N. Rule-based security monitoring of containerized environments. In: Proc. of the 9th Int’l Conf. on Cloud Computing and Services Science. Heraklion: Springer, 2019. 66–86.
    [93] Simonsson J, Zhang L, Morin B, Baudry B, Monperrus M. Observability and chaos engineering on system calls for containerized applications in docker. Future Generation Computer Systems, 2021, 122: 117–129. [doi: 10.1016/j.future.2021.04.001]
    [94] Ruan BW, Huang H, Wu S, Jin H. A performance study of containers in cloud environment. In: Proc. of the 10th Asia-Pacific Services Computing Conf. on Advances in Services Computing. Zhangjiajie: Springer, 2016. 343–356.
    [95] Varghese B, Subba LT, Thai L, Barker A. DocLite: A Docker-based lightweight cloud benchmarking tool. In: Proc. of the 16th IEEE/ACM Int’l Symp. on Cluster, Cloud and Grid Computing. Cartagena: IEEE, 2016. 213–222.
    [96] Santos EA, McLean C, Solinas C, Hindle A. How does docker affect energy consumption? Evaluating workloads in and out of docker containers. Journal of Systems and Software, 2018, 146: 14–25. [doi: 10.1016/j.jss.2018.07.077]
    [97] Garg SK, Lakshmi J, Johny J. Migrating VM workloads to containers: Issues and challenges. In: Proc. of the 11th IEEE Int’l Conf. on Cloud Computing (CLOUD). San Francisco: IEEE, 2018. 778–785.
    [98] Yoshimura T, Nakazawa R, Chiba T. ImageJockey: A framework for container performance engineering. In: Proc. of the13th IEEE Int’l Conf. on Cloud Computing (CLOUD). Beijing: IEEE, 2020. 238–247.
    [99] Affetti L, Bresciani G, Guinea S. aDock: A cloud infrastructure experimentation environment based on open stack and Docker. In: Proc. of the 8th IEEE Int’l Conf. on Cloud Computing (CLOUD). New York: IEEE, 2015. 203–210.
    [100] Zhang R, Zhong AM, Dong B, Tian F, Li R. Container-vm-pm architecture: A novel architecture for Docker container placement. In: Proc. of the 11th Int’l Conf. Held as Part of the Services Conf. Federation on Cloud Computing. Seattle: Springer, 2018. 128–140.
    [101] Haque MU, Iwaya LH, Babar MA. Challenges in Docker development: A large-scale study using stack overflow. In: Proc. of the 14th ACM/IEEE Int’l Symp. on Empirical Software Engineering and Measurement (ESEM). Bari: ACM, 2020. 7.
    [102] Gholami S, Goli A, Bezemer CP, Khazaei H. A framework for satisfying the performance requirements of containerized software systems through multi-versioning. In: Proc. of the 2020 ACM/SPEC Int’l Conf. on Performance Engineering. Edmonton: ACM, 2020. 150–160.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴逸文,张洋,王涛,王怀民.从Docker容器看容器技术的发展: 一种系统文献综述的视角.软件学报,2023,34(12):5527-5551

复制
分享
文章指标
  • 点击次数:2696
  • 下载次数: 8669
  • HTML阅读次数: 4277
  • 引用次数: 0
历史
  • 收稿日期:2022-05-18
  • 最后修改日期:2022-06-30
  • 在线发布日期: 2023-02-15
  • 出版日期: 2023-12-06
文章二维码
您是第20544882位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号