摘要:传统的信息隐藏算法大都通过修改载体达到隐藏秘密信息的目的, 但不可避免地会在载体数据中留下修改痕迹, 故常难以抵抗隐写分析技术的检测, 为此无载体信息隐藏应运而生. 无载体信息隐藏并非不使用载体, 而是不对载体数据进行修改. 为了提高无载体信息隐藏算法的隐藏容量和鲁棒性, 提出了一种基于风格迁移纹理合成与识别的构造式信息隐藏算法. 该算法首先选取不同类别的自然图像和纹理图像分别建立内容图像库和纹理风格图像库, 并根据内容图像库中自然图像的类别构建二进制码的映射字典; 其次为了接收方能够从含密图像中提取出秘密信息, 需要构建带标签的纹理图像库, 并将其作为训练集输入到卷积神经网络中, 通过迭代训练获得纹理图像识别模型. 在秘密信息隐藏时, 根据秘密信息片段选择对应类别的自然图像, 并按照一定的顺序组合成含密拼接图像, 随后从纹理图像库中随机选择一张纹理图像, 通过风格迁移的方法将含密拼接图像转换成含密纹理图像, 从而完成秘密信息隐藏过程. 在信息提取过程中, 通过纹理图像识别模型可准确识别出含密纹理图像原本对应的图像类别, 再对照映射字典即可提取出秘密信息. 实验结果表明, 所提算法生成的含密纹理图像具有良好的视觉效果, 秘密信息隐藏容量较高, 且对JPEG压缩、高斯噪声等攻击具有较强的鲁棒性.