数据定价与交易研究综述
作者:
作者简介:

江东(1996-),男,博士生,主要研究领域为大图数据分析,数据定价;袁野(1981-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为大数据管理,数据库理论与系统;张小伟(1996-),男,硕士生,主要研究领域为数据定价;王国仁(1966-),男,博士,教授,博士生导师,CCF杰出会员,主要研究领域为不确定数据管理,数据密集型计算,可视媒体数据管理与分析,非结构化数据管理,分布式查询处理与优化技术,生物信息学.

通讯作者:

袁野,yuanye@mail.neu.edu.cn

基金项目:

国家自然科学基金(61932004,61732003,62072087,U2001211);中央高校基本科研基金(N181605012)


Survey on Data Pricing and Trading Research
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [97]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在大数据时代,随着信息技术的发展,各行各业都在收集海量数据.数据是数字经济的基础,蕴含有巨大价值.但是由于缺乏高效可行的共享机制,数据拥有方彼此之间缺乏沟通,形成了一个个数据孤岛.这不利于大数据产业的健康发展.因此,给数据分配一个合适的价格,设计高效的数据交易市场平台成为消除数据孤岛、使数据充分流动的重要途径.系统梳理进行数据定价与交易时涉及的技术性问题.具体来说,介绍数据定价与交易的难点和相关准则;将大数据在市场中的生命周期分为数据收集与集成、数据管理与分析、数据定价和数据交易4个环节;在大数据管理研究的基础上介绍适用于前两个环节的相关方法;然后对数据定价思路和方法进行分类,分析各类方法的适用场景以及优势和短板;介绍数据市场的分类,以博弈论和拍卖为例研究了数据交易中市场类型和参与人行为对交易过程及价格的影响.最后,对数据定价与交易的未来研究方向进行展望.

    Abstract:

    In the big data era, an enormous amount of data is collected in every industry with the development of information technology. Data is the foundation of the digital economy, containing great value. However, for the lack of efficient and feasible data-sharing mechanisms, data owners seldom communicate with each other, which leads to the formation of data islands and is unfavorable to the healthy development of the big data industry. Hence, allocating a proper price to data and designing an efficient data market platform have become important ways to eliminate data islands and secure sufficient data flow. This study systematically sorts out the technical issues regarding data pricing and trading. Specifically, the difficulties and related principles of data pricing and trading are introduced. The life cycle of data in the data market is divided into four stages: data collection and integration, data management and analysis, data pricing, and data trading. Upon the research on big data management, related methods applicable to the first two stages are elaborated. After that, data pricing methods are categorized, and usage scenarios, advantages, and shortcomings of these methods are analyzed. Moreover, the classification of data markets is introduced, and the impact of market types and participants’ behavior in data trading on the trading process and prices is studied with game theory and auctions as examples. Finally, future research directions of data pricing and trading are discussed.

    参考文献
    [1] 中国信息通信研究院.大数据白皮书(2020年).2020.http://www.caict.ac.cn/kxyj/qwfb/bps/202012/t20201228_367162.htm China Academy of Information and Communications Technology (CAICT).White paper of big data (2020).2020(in Chinese).http://www.caict.ac.cn/kxyj/qwfb/bps/202012/t20201228_367162.htm
    [2] 黄欣荣.从复杂性科学到大数据技术.长沙理工大学学报(社会科学版), 2014, 29(2):5-9.[doi:10.3969/j.issn.1672-934X.2014.02.001] Huang XR.From complexity science to big data technique.Journal of Changsha University of Science & Technology (Social Science), 2014, 29(2):5-9(in Chinese with English Abstract).[doi:10.16573/j.cnki.1672-934x.2014.02.001]
    [3] The Economists.The world's most valuable resource is no longer oil, but data.2017.https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
    [4] Data.gov.https://www.data.gov
    [5] Ubaldi B.Open government data:Towards empirical analysis of open government data initiatives.2013.https://www.oecd-ilibrary.org/governance/open-government-data_5k46bj4f03s7-en
    [6] Delta lake.https://delta.io
    [7] Global big data exchange.https://www.gzdex.com.cn/
    [8] Donghu big data.http://www.chinadatatrading.com/
    [9] Beijing International Data Exchange.https://www.bjidex.com/
    [10] Dawex:Sell, buy and share data.https://www.dawex.com/en/
    [11] Xignite.https://www.xignite.com/
    [12] WorldQuant.https://www.worldquant.com/data-exchange/
    [13] 张小伟, 江东, 袁野.基于博弈论和拍卖的数据定价综述.大数据, 2021, 7(4):61-79 Zhang XW, Jiang D, Yuan Y.A survey of game theory and auction-based data pricing.Big Data Research, 2021, 7(4):61-79(in Chinese with English Abstract).[doi:10.11959/j.issn.2096-0271.2021039]
    [14] Pei J.A survey on data pricing:From economics to data science.IEEE Transactions on Knowledge and Data Engineering, 2022, 34(10):4586-4608.[doi:10.1109/TKDE.2020.3045927]
    [15] 刘枬, 郝雪镜, 陈俞宏.大数据定价方法的国内外研究综述及对比分析.大数据, 2021, 7(6):89-102.[doi:10.11959/j.issn.2096-0271.2021063] Liu N, Hao XJ, Chen YH.A review and comparative analysis of domestic and foreign research on big data pricing methods.Big Data Research, 2021, 7(6):89-102(in Chinese with English Abstract).[doi:10.11959/j.issn.2096-0271.2021063]
    [16] 蔡莉, 黄振弘, 梁宇, 朱扬勇.数据定价研究综述.计算机科学与探索, 2021, 15(9):1595-1606.[doi:10.3778/j.issn.1673-9418.2103069] Cai L, Huang ZH, Liang Y, Zhu YY.Survey of data pricing.Journal of Frontiers of Computer Science and Technology, 2021, 15(9):1595-1606(in Chinese with English Abstract).[doi:10.3778/j.issn.1673-9418.2103069]
    [17] 刘朝阳.大数据定价问题分析.图书情报知识, 2016, (1):57-64.[doi:10.13366/j.dik.2016.01.057] Liu ZY.Analysis on pricing of big data.Documentation, Information & Knowledge, 2016, (1):57-64(in Chinese with English Abstract).[doi:10.13366/j.dik.2016.01.057]
    [18] Zhang M, Arafa A, Huang JW, Poor HV.Pricing fresh data.IEEE Journal on Selected Areas in Communications, 2021, 39(5):1211-1225.[doi:10.1109/JSAC.2021.3065088]
    [19] 唐斯斯, 刘叶婷.我国大数据交易亟待突破.中国发展观察, 2016, (13):19-21.[doi:10.3969/j.issn.1673-033X.2016.13.007] Tang SS, Liu YT.China's big data transaction urgently needs a breakthrough.China Development Observation, 2016, (13):19-21(in Chinese with English abstract).[doi:DOI:10.3969/j.issn.1673-033X.2016.13.007]
    [20] 胡燕玲.大数据交易现状与定价问题研究.价格月刊, 2017, (12):16-19.[doi:10.14076/j.issn.1006-2025.2017.12.04] Hu YL.Research on status quo and pricing issue of big data trade.Prices Monthly, 2017, (12):16-19(in Chinese with English abstract).[doi:10.14076/j.issn.1006-2025.2017.12.04]
    [21] Cai H, Zhu YM, Li J, Yu JD.Double auction for a data trading market with preferences and conflicts of interest.The Computer Journal, 2019, 62(10):1490-1504.[doi:10.1093/comjnl/bxz025]
    [22] An D, Yang QY, Yu W, Li DH, Zhang Y, Zhao W.Towards truthful auction for big data trading.In:Proc.of the 36th IEEE Int'l Performance Computing and Communications Conf.San Diego:IEEE, 2017.1-7.
    [23] Jiao YT, Wang P, Niyato D, Abu Alsheikh M, Feng SH.Profit maximization auction and data management in big data markets.In:Proc.of the 2017 IEEE Wireless Communications and Networking Conf.San Francisco:IEEE, 2017.1-6.
    [24] Xiong ZH, Niyato D, Wang P, Han Z, Zhang Y.Dynamic pricing for revenue maximization in mobile social data market with network effects.IEEE Transactions on Wireless Communications, 2020, 19(3):1722-1737.[doi:10.1109/TWC.2019.2957092]
    [25] Khokhar RH, Iqbal F, Fung BCM, Bentahar J.Enabling secure trustworthiness assessment and privacy protection in integrating data for trading person-specific information.IEEE Transactions on Engineering Management, 2021, 68(1):149-169.[doi:10.1109/TEM.2020.2974210]
    [26] Delgado-Segura S, Pérez-Solà C, Navarro-Arribas G, Herrera-Joancomartí J.A fair protocol for data trading based on Bitcoin transactions.Future Generation Computer Systems, 2020, 107:832-840.[doi:10.1016/j.future.2017.08.021]
    [27] Koutris P, Upadhyaya P, Balazinska M, Howe B, Suciu D.Toward practical query pricing with QueryMarket.In:Proc.of the ACM SIGMOD Int'l Conf.on Management of Data.New York:ACM, 2013.613-624.
    [28] Shapley LS.A value for n-person games.Classics in Game Theory, 1997, 69.
    [29] Jia RX, Dao D, Wang BX, Hubis FA, Gürel NM, Li B, Zhang C, Spanos CJ, Song D.Efficient task-specific data valuation for nearest neighbor algorithms.Proceedings of the VLDB Endowment, 2019, 12(11):1610-1623.[doi:10.14778/3342263.3342637]
    [30] Balazinska M, Howe B, Suciu D.Data markets in the cloud:An opportunity for the database community.Proceedings of the VLDB Endowment, 2011, 4(12):1482-1485.[doi:10.14778/3402755.3402801]
    [31] Koutris P, Upadhyaya P, Balazinska M, Howe B, Suciu D.Query-based data pricing.In:Proc.of the 31st ACM SIGMOD-SIGACT-SIGAI Symp.on Principles of Database Systems.Scottsdale:ACM, 2012.167-178.
    [32] Li C, Miklau G.Pricing aggregate queries in a data marketplace.In:Proc.of the 15th Int'l Workshop on the Web and Databases.Scottsdale:ACM, 2012.19-24.
    [33] Li C, Li DY, Miklau G, Suciu D.A theory of pricing private data.ACM Transactions on Database Systems, 2014, 39(4):34.[doi:10.1145/2691190.2691191]
    [34] Lin BR, Kifer D.On arbitrage-free pricing for general data queries.Proceedings of the VLDB Endowment, 2014, 7(9):757-768.[doi:10.14778/2732939.2732948]
    [35] Deep S, Koutris P.The design of arbitrage-free data pricing schemes.In:Proc.of the 20th Int'l Conf.on Database Theory (ICDT 2017).Berlin, Springer.2017.1-12, 18.
    [36] Deep S, Koutris P.QIRANA:A framework for scalable query pricing.In:Proc.of the 2017 ACM Int'l Conf.on Management of Data.Chicago:ACM, 2017.699-713.
    [37] Roughgarden T.Twenty Lectures on Algorithmic Game Theory.Cambridge:Cambridge University Press, 2016.111-112.
    [38] Myerson RB.Optimal auction design.Mathematics of Operations Research, 1981, 6(1):58-73.
    [39] Niu CY, Zheng ZZ, Wu F, Tang SJ, Chen GH.Online pricing with reserve price constraint for personal data markets.In:Proc.of the 36th IEEE Int'l Conf.on Data Engineering.Dallas:IEEE, 2020.1978-1981.
    [40] Babaioff M, Immorlica N, Lucier B, Weinberg SM.A simple and approximately optimal mechanism for an additive buyer.Journal of the ACM, 2020, 67(4):24.[doi:10.1145/3398745]
    [41] Cai Y, Zhao MF.Simple mechanisms for subadditive buyers via duality.In:Proc.of the 49th Annual ACM SIGACT Symp.on Theory of Computing.Montreal:ACM, 2017.170-183.
    [42] Chawla S, Deep S, Koutris P, Teng YF.Revenue maximization for query pricing.Proceedings of the VLDB Endowment, 2019, 13(1):1-14.[doi:10.14778/3357377.3357378]
    [43] Agarwal A, Dahleh M, Sarkar T.A marketplace for data:An algorithmic solution.In:Proc.of the 2019 ACM Conf.on Economics and Computation.Phoenix:ACM, 2019.701-726.
    [44] Chen LJ, Koutris P, Kumar A.Towards model-based pricing for machine learning in a data marketplace.In:Proc.of the 2019 Int'l Conf.on Management of Data.Amsterdam:ACM, 2019.1535-1552.
    [45] Ghosh A, Roth A.Selling privacy at auction.In:Proc.of the 12th ACM Conf.on Electronic Commerce.San Jose:ACM, 2011.199-208.
    [46] Fernandez RC, Subramaniam P, Franklin MJ.Data market platforms:Trading data assets to solve data problems.Proceedings of the VLDB Endowment, 2020, 13(12):1933-1947.[doi:10.14778/3407790.3407800]
    [47] Riederer C, Erramilli V, Chaintreau A, Krishnamurthy B, Rodriguez P.For sale?:your data:By?:you.In:Proc.of the 10th ACM Workshop on Hot Topics in Networks.Cambridge:ACM, 2011.13.
    [48] Apache flume.http://flume.apache.org/
    [49] Fluentd.https://www.fluentd.org/
    [50] Logstash.https://www.elastic.co/cn/logstash/
    [51] Splunk.https://www.splunk.com/en_us/download/universal-forwarder.html
    [52] Dalvi N, Kumar R, Soliman M.Automatic wrappers for large scale web extraction.Proceedings of the VLDB Endowment, 2011, 4(4):219-230.[doi:10.14778/1938545.1938547]
    [53] Bohannon P, Dalvi N, Filmus Y, Jacoby N, Keerthi S, Kirpal A.Automatic Web-scale information extraction.In:Proc.of the 2012 ACM SIGMOD Int'l Conf.on Management of Data.Scottsdale:ACM, 2012.609-612.
    [54] Cafarella MJ, Halevy A, Wang DZ, Wu E, Zhang Y.WebTables:Exploring the power of tables on the web.Proceedings of the VLDB Endowment, 2008, 1(1):538-549.[doi:10.14778/1453856.1453916]
    [55] Cafarella M, Halevy A, Lee H, Madhavan J, Yu C, Wang DZ, Wu E.Ten years of webtables.Proceedings of the VLDB Endowment, 2018, 11(12):2140-2149.[doi:10.14778/3229863.3240492]
    [56] Elmeleegy H, Madhavan J, Halevy A.Harvesting relational tables from lists on the web.Proceedings of the VLDB Endowment, 2009, 2(1):1078-1089.[doi:10.14778/1687627.1687749]
    [57] Chu X, He YY, Chakrabarti K, Ganjam K.TEGRA:Table extraction by global record alignment.In:Proc.of the 2015 ACM SIGMOD Int'l Conf.on Management of Data.Melbourne:ACM, 2015.1713-1728.
    [58] Hui JY, Li LL, Zhang ZG.Integration of big data:A survey.In:Proc.of the 4th Int'l Conf.of Pioneering Computer Scientists, Engineers and Educators.Zhengzhou:Springer, 2018.101-121.
    [59] Madhavan J, Bernstein PA, Rahm E.Generic schema matching with cupid.In:Proc.of the 27th Int'l Conf.on Very Large Data Bases.Roma:Morgan Kaufmann Publishers Inc., 2001.49-58.
    [60] 朱灿, 曹健.实体解析技术综述与展望.计算机科学, 2015, 42(3):8-12, 18.[doi:10.11896/j.issn.1002-137X.2015.3.002] Zhu C, Cao J.Summary and prospect on entity resolution.Computer Science, 2015, 42(3):8-12, 18(in Chinese with English Abstract).[doi:10.11896/j.issn.1002-137X.2015.3.002]
    [61] Yin XX, Han JW, Yu PS.Truth discovery with multiple conflicting information providers on the web.IEEE Transactions on Knowledge and Data Engineering, 2008, 20(6):796-808.[doi:10.1109/TKDE.2007.190745]
    [62] Domshlak C, Gal A, Roitman H.Rank aggregation for automatic schema matching.IEEE Transactions on Knowledge and Data Engineering, 2007, 19(4):538-553.[doi:10.1109/TKDE.2007.1010]
    [63] Xie ZZ, Liu QZ, Bao ZF.Sifting truths from multiple low-quality data sources.In:Proc.of the 1st Asia-Pacific Web (APWeb) and Web-age Information Management (WAIM) Joint Conf.on Web and Big Data.Beijing:Springer, 2017.74-81.
    [64] Rekatsinas T, Joglekar M, Garcia-Molina H, Parameswaran A, Ré C.SLiMFast:Guaranteed results for data fusion and source reliability.In:Proc.of the 2017 ACM Int'l Conf.on Management of Data.Chicago:ACM, 2017.1399-1414.
    [65] Li YL, Li Q, Gao J, Su L, Zhao B, Fan W, Han JW.Conflicts to harmony:A framework for resolving conflicts in heterogeneous data by truth discovery.IEEE Transactions on Knowledge and Data Engineering, 2016, 28(8):1986-1999.[doi:10.1109/TKDE.2016.2559481]
    [66] Li Q, Li YL, Gao J, Zhao B, Fan W, Han JW.Resolving conflicts in heterogeneous data by truth discovery and source reliability estimation.In:Proc.of the 2014 ACM SIGMOD Int'l Conf.on Management of Data.Snowbird:ACM, 2014.1187-1198.
    [67] Zhang HT, Li Q, Ma FL, Xiao HP, Li YL, Gao J, Su L.Influence-aware truth discovery.In:Proc.of the 25th ACM Int'l on Conf.on Information and Knowledge Management.Indianapolis:ACM, 2016.851-860.
    [68] Grover M, Malaska T, Seidman J, Shapira G.Hadoop Application Architectures:Designing Real-world Big Data Applications.Sebastopol:O'Reilly Media Inc., 2015.
    [69] Stonebraker M.The case for polystores.2015.http://wp.sigmod.org/?p=1629
    [70] Hai RH, Geisler S, Quix C.Constance:An intelligent data lake??????呭爮慉湮猺慐捲瑯楣漮湯獦?潴湨??漲戰椱氶攠??潴洧灬甠瑃楯湮杦??????????????ㄠ?????????孡摮漠楆??の???っ??呁???㈠????金???祝??崱?戰爮?孢???崷??稠楌浩極?博????慡湣獩桧愦攣椲‵???…?攲渵搲攻獳猠楈????潩潮灥攠牯慰瑴楩癭敩?灡牴楩浯慮爠祡?獤攠捦潡湩摲愠牣祯?摴祩湮慧洠楦捯?猠灤敹据瑡牭畩浣?汤敡慴獡椠湳杨?杲慩浮敧?癩楮愠?搠散捬敯湵瑤爠慤污楴穡攠摭?扲慫牥杴愮楉湮椺湐杲?坣椮牯敦氠整獨獥?串攰琱眴漠牁歃獍???ぇ??????????????????孍摡潮楡??ね??ぴ???猠??????の???ど?????嵍?戠爲?嬱???崳‵?渭???‰央愼湢杲 ̄兛夷??夠界?坡??夠慆測朠?塵夠???畁?堠坄??婙桡慮潧?坑?匬琠潆??畘捗???獨瑡潯挠桗愮獁琠楳捵?潶灥瑹椠浯慮氠?扩楧搠摤楡湴条?獭瑡牲慫瑥整机祐?晩潣物?浧椬挠牴潲条牤楩摮獧???????湯瑴敥牣湴敩瑯?漮晉?呅桅椠湁杣獣??潳甬爠渲愰氱??㈠??????????㈱特????????嬰搮漱椱??????ぅ????估吱?金????劳??????崾?户爳?嬠???嵤??潡獹楡映楐搬椠獂?????慮潳?????甠慓湵杣??圠??呐慲獩獣楥甭汯慰獴????渠?極瑥敲特慩瑮楧瘠敷?摴潨甠扤污整?愠畁捐瑉楳漮湐?景潣牥?浤潩扮楧汳攠?摦愠瑴慨?漠晖晌汄潂愠摅楮湤杯??湥?側爬漠挲?漱昶?琠根攨??ㄩ琺栱??渵琭?氷‰匶礮浛灤?慩渺搱‰圮漱爴欷猷核漯瀳猰‰漷渳′?漮搳攰氰椷渳朳‵慝渼摢?伾灛琷椴浝椠穗慡瑮楧漠湘?椬渠??潩戠楘汈攬???摵??潙挬?慇湡摯?坓椮牏敮氠数獲獩?乩敮瑧眠潡牰歰獲?呸獩畭歡畴扥愠???????金ぉ????????????扣物?孮???崬??渰????头愵渳机?儹夸?′失电?坛??奩愺渱朰?報夰???番?塩坮??娲栰愱漸?地?匮估???匼瑢牲愾瑛攷朵祝?灎牧潥潴映?漬渠汃楡湯攠?搬漠留扯汳敨?慫畡捷瑡椠潍渮?獯捷栠整浯攠?晡潬牡?浣略氠瑰楲浩楶捡牣潹朠牡楮摤猠?扯楮摥摹椠湴杨??????呰牲慩湣獩慮捧琠業潥湣獨?潮湩?卭礠獩瑮攠浰獥???慮湡??慤湡摴??祭扡敲牫湥整琮楉据猺?卲祯獣琮敯浦猠??????????????ㄠ???????ば?孯摮漠楥??ね???っ??呃卯????ち???㈠???と??嵨?戠爴?孴?ㄠ?嵮??慬猠?千前??卉畇湉摒愠牃慯浮?刮???畒捥瑳楥潡湲?瑨栠敡潮牤礠???獥畬浯浰慭牥祮?眠楩瑮栠?慮灦灯汲業捡慴瑩楯潮渠獒?瑴潲?瑥牶敡慬献畔牯祫?浯愺牃歅敕瑒猭?坓漮牯歲楧測朠′倰愱瀹攮爼????????慔浡扮牧椠摒杍攬?乗慵琠楈潙測愠求??甠牚敆愬甠?潲晥??捡潮渠潓洬椠捖?剬敤獵敲慩牥捺栠????????扩牣?嬠???嵲?乧楨獴愭湭?乤??剳漠湡敮湤????潯浲灩畴瑨慭瑳椠潦湯慲氠汰祲?晣敩慮獧椠扤污整?嘮???浐敲捯档愮湯楦猠浴獨??漲甴牴湨愠汉?潴昧??牃瑯楮晦椮捯楮愠汄??湡瑢敡汳汥椠条敮湤挠故?剰敥獲整愠牓捹桳???び?????????????嬮摐潲楡??づ??????橧慥楲爬?有???崮?戸爰?嬳???崼??椾牛挷样歝愠浓灨?佮??偃漬攠湇????刬攠楓???㈠????偵?佮甠瑘獌椬搠敄?潮灧琠楘潑測猠??湡潮瑧栠效爮?爠数慲獩潣湩?瑧漠?捯桤潥潬猠敦?瑲栠敢?晧椠牰獥瑲?灯牮楡捬攠?慡畴捡琮楔潳湩??畨牵潡瀠敓慣湩??捣潥渠潡浮楤挠?剥散癨楮敯睬???????????有??????????嬹搰漮楛??ど??????樰?支畔牓潔攮挲漰爱收瘮?特???????ぢひ?嵛?戸牝?孃??の崠??搬攠汋浯慵湴????佐猬琠牋潵癭獡歲礠????卤捥桬眭慢牡穳????湲瑩散物湮敧琺?慯搠癮敯牴琠楰獡楹渠杦?慲渠摭?瑲桥攠?杨敡湮攠牷慨污楴稠敹摯?猠敬捥潡湲摮?瀠牉楮挺敐?慯畣挮瑯楦漠湴?卥攠氱汳楴渠杗?扲楫汳汨楯潰渠獯?漠晄?摴潡氠汍慡牮獡?睥潭牥瑮桴?潦景?欠故祮睤漭牴摯猭??浤攠牍楡捣慨湩??挠潌湥潡浲楮捩?剧攮癃楨敩督????ぁ?????????㈱?监??????扝爠?孨???崠??甬猠畂扥敬汴????′?椻汮朠牆漬洠?偩?吠桊敍?汓潥癬敬汩祮?戠畤瑡?污漠湡整氠祡?嘠楡捵正牴敩祯?愠畵据瑤楥潲渠??湩??牣慹洠瑣潯湮?側??卩桮潴桳愮浉?夺??卯瑣攮楯湦戠整牨来?刳??敨搠獃??潦洮扯楮渠慕瑮潣牥楲慴污??畴捹琠楩潮渠獁??慩浦扩牣楩摡杬攠?呮桴敥???呧?偮牣敥献獓??㈠いど??????ぁ??扐牲?孳?水㈠崲‰?田挮椶收爹?????攼浢敲 ̄剛倸??吠慓牴摡潨獬???传湖?牳敳癥敮渠畇攮?楡湴?琠桱敵?杬敩湴敹爠慳汣楯穲敥摳?獦敯捲漠湰摲?灣物楮捧攠?慮甠捤瑡楴潡渠??湲?健牴潰捬?潣晥?琮桉敮???獯瑣??湦琠?汨??漸湴晨?潁湳?坡潮爠汃摯?坦椮摯敮?坉敮扴??祬潩湧???????は?????????の??扄牡?孡???嵥?奓慹湳杴???吮桄敡?敎晡普楧挺楓数湲捩祮?潥晲?愠渲‰愱父琮椲昱椵挭椲愲水?搼潢畲戾汛攸?慝甠捙瑵椠潈湆?猠瑚潨捡歮?洠慍牘欮敄瑡?睡椠瑰桲?湣敩畮牧愠汳?汲敡慴牥湧楹渠杢?慳来敤渠瑯獮??湡??栠敱湵?卬???攮摃??癰潵汴略瑲楳漠渦愠牉祮??潳浴灲畩瑡慬琠楅潮湧?楮湥??捩潮湧漬洠椲挰猱?愬渠搱??椺渱愭渱挰攮??敯物氺椱渰???攱椶搯敪氮扣敩牥朮?匰瀱爷椮渰朸攮爰????ぢ??????????扮牧?孄?㈠?嵡??椠?????奩慮湧朠?兏夬??奨畡?坧???測????奊慚測朠?塡奯?呈漮睏慮爠摴獨?搠潦畡扩汲敮?慳畳挠瑯楦漠湱?晡潬物?慹猭獢楡獳瑥楤渠杤?整污攠捭瑡牲楫捥?癳攮桡楲捘汩敶猺?搸攰洸愮渰搱?爲攴猬瀠漲渰猱攸?椼湢?猾浛愸爳瑝?杙牡楮摧??測?做牨潡捯?潃晃?琠桘敩???瑃桘???????潴湡映?潡湲??畴琠潯浰慴瑩業潩湺?却捩楯敮渠捰敲?慣湩摮??湭杯楤湥敬攠牢楡湳来?堠楯?愠湤????????ど?????ね????ど???戠爲?嬱?水?崲‰丱椹猺愵渹?临??券漮畛杤桯杩愺爱搰攮渱?吵??吲愰爱搹漯猵???日?????噲愾穛椸爴慝渠楓?噡器??汆本漠牖楯瑳桳浥楮挠??慆浡敩?吠桫敮潡牰祳??慫洠扰牲楩摣杩敮??慦浯扲爠楤摡杴敡?啭湡楲癫敥牴獰楬瑡祣?偳爮敉獮猺???っ????ぴと??戲爰?孨ㄠ??嵳??牅極捲歯数牥?卮????慦欮獯楮洠潁癤?奡噮?健牳椠捩楮渠杄?潴晡?摡慳瑥慳?灡牮潤搠畉据瑦獯?業湡?摩慯瑮愠?浹慳牴步敭瑳瀮汐慲捡敧獵??湓?偲物潮捧?潲昬?琲栰攱??琴栶??渹琮?汢??潛游昵?漠晍?卩漠晌瑊眬愠牌敩??甬猠楎湩敥猠獋??獲獩散湩?卧瀠牤楥湣杩敳物??㈠ち??????????r information services of the Internet of Things based on Stackelberg game.In:Zhang ZJ, Zhang RT, Zhang JL, eds.LISS 2012.Berlin, Heidelberg:Springer, 2013.1097-1104.
    [86] Liu K, Qiu XY, Chen WH, Chen X, Zheng ZB.Optimal pricing mechanism for data market in Blockchain-enhanced internet of things.IEEE Internet of Things Journal, 2019, 6(6):9748-9761.[doi:10.1109/JIOT.2019.2931370]
    [87] Xu CZ, Zhu K, Yi CY, Wang R.Data pricing for Blockchain-based car sharing:A Stackelberg game approach.In:Proc.of 2020 IEEE Global Communications Conf.Taipei:IEEE, 2020.1-5.
    [88] Kang X, Zhang R, Motani M.Price-based resource allocation for spectrum-sharing femtocell networks:A Stackelberg game approach.IEEE Journal on Selected Areas in Communications, 2012, 30(3):538-549.[doi:10.1109/JSAC.2012.120404]
    [89] Yao HP, Mai TL, Wang JJ, Ji Z, Jiang CX, Qian Y.Resource trading in Blockchain-based industrial internet of things.IEEE Transactions on Industrial Informatics, 2019, 15(6):3602-3609.[doi:10.1109/TII.2019.2902563]
    [90] Rawat DB, Shetty S, Xin CS.Stackelberg-game-based dynamic spectrum access in heterogeneous wireless systems.IEEE Systems Journal, 2016, 10(4):1494-1504.[doi:10.1109/JSYST.2014.2347048]
    [91] Jung K, Park S.Privacy bargaining with fairness:Privacy-price negotiation system for applying differential privacy in data market environments.In:Proc.of the 2019 IEEE Int'l Conf.on Big Data.Los Angeles:IEEE, 2019.1389-1394.
    [92] Wu QW, Zhou MC, Zhu QS, Xia YN.VCG auction-based dynamic pricing for multigranularity service composition.IEEE Transactions on Automation Science and Engineering, 2018, 15(2):796-805.[doi:10.1109/TASE.2017.2695123]
    [93] Gao WC, Yu W, Liang F, Hatcher WG, Lu C.Privacy-preserving auction for big data trading using homomorphic encryption.IEEE Transactions on Network Science and Engineering, 2020, 7(2):776-791.[doi:10.1109/TNSE.2018.2846736]
    [94] Cao XY, Chen Y, Ray Liu KJ.Data trading with multiple owners, collectors, and users:An iterative auction mechanism.IEEE Transactions on Signal and Information Processing over Networks, 2017, 3(2):268-281.[doi:10.1109/TSIPN.2017.2668144]
    [95] Xiong W, Xiong L.Anti-collusion data auction mechanism based on smart contract.Information Sciences, 2021, 555:386-409.[doi:10.1016/j.ins.2020.10.053]
    [96] Wang RY, Strong DM.Beyond accuracy:What data quality means to data consumers.Journal of Management Information Systems, 1996, 12(4):5-33.[doi:10.1080/07421222.1996.11518099]
    [97] Naumann F.Quality-Driven Query Answering for Integrated Information Systems.Berlin, Heidelberg:Springer, 2002.
    [98] Nagle TT, Hogan JE, Zale J.The Strategy and Tactics of Pricing.5th ed., Upper Saddle River:Prentice Hall, 2010.
    [99] Fama EF, French KR.Commodity futures prices:Some evidence on forecast power, premiums, and the theory of storage.In:Malliaris AG, Ziemba WT, eds.The World Scientific Handbook of Futures Markets.Singapore:World Scientific, 2015.79-102.
    [100] Sen A.Rational fools:A critique of the behavioral foundations of economic theory.Philosophy and Public Affairs, 1977, 6(4):317-344.
    [101] McAfee RP.A dominant strategy double auction.Journal of Economic Theory, 1992, 56(2):434-450.[doi:10.1016/0022-0531(92)90091-U]
    [102] Muschalle A, Stahl F, Löser A, Vossen G.Pricing approaches for data markets.In:Proc.of the 6th Int'l Workshop on Business Intelligence for the Real-time Enterprise.Istanbul:Springer, 2012.129-144.
    [103] Niyato D, Alsheikh MA, Wang P, Kim DI, Han Z.Market model and optimal pricing scheme of big data and Internet of Things (IoT).In:Proc.of the 2016 IEEE Int'l Conf.on Communications.Kuala Lumpur:IEEE, 2016.31-36.
    [104] Niyato D, Hoang DT, Luong NC, Wang P, Kim DI, Han Z.Smart data pricing models for the internet of things:A bundling strategy approach.IEEE Network, 2016, 30(2):18-25.[doi:10.1109/MNET.2016.7437020]
    [105] Nash J.Non-cooperative games.Annals of mathematics, 1951, 54(2):286-295.[doi:10.2307/1969529]
    [106] Luong NC, Hoang DT, Wang P, Niyato D, Kim DI, Han Z.Data collection and wireless communication in internet of things (IoT) using economic analysis and pricing models:A survey.IEEE Communications Surveys & Tutorials, 2016, 18(4):2546-2590.[doi:10.1109/COMST.2016.2582841]
    [107] Li ZN, Yang ZY, Xie SL.Computing resource trading for edge-cloud-assisted internet of things.IEEE Transactions on Industrial Informatics, 2019, 15(6):3661-3669.[doi:10.1109/TII.2019.2897364]
    [108] Simaan M, Cruz JB.On the Stackelberg strategy in nonzero-sum games.Journal of Optimization Theory and Applications, 1973, 11(5):533-555.[doi:10.1007/BF00935665]
    [109] Haddadi S, Ghasemi A.Pricing-based Stackelberg game for spectrum trading in self-organised heterogeneous networks.IET Communicatons, 2016, 10(11):1374-1383.[doi:10.1049/iet-com.2016.0033]
    [110] Lv XY, Zhang RT, Yue JJ.Competition and cooperation between participants of the internet of things industry value chain.International Journal on Advances in Information Sciences and Service Sciences, 2012, 4(11):406-412.[doi:10.4156/aiss.vol4.issue11.50]
    [111] Mao YX, Cheng T, Zhao HY, Shen N.A strategic bargaining game for a spectrum sharing scheme in cognitive radio-based heterogeneous wireless sensor networks.Sensors, 2017, 17(12):2737.[doi:10.3390/s17122737]
    [112] Moulik S, Misra S, Gaurav A.Cost-effective mapping between wireless body area networks and cloud service providers based on multi-stage bargaining?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

江东,袁野,张小伟,王国仁.数据定价与交易研究综述.软件学报,2023,34(3):1396-1424

复制
分享
文章指标
  • 点击次数:2182
  • 下载次数: 5826
  • HTML阅读次数: 6950
  • 引用次数: 0
历史
  • 收稿日期:2021-11-01
  • 最后修改日期:2022-05-09
  • 在线发布日期: 2022-10-26
  • 出版日期: 2023-03-06
文章二维码
您是第19893582位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号