基于测量设备无关的可认证身份量子投票方案
作者:
作者简介:

柯唯阳(1996-),男,硕士,主要研究领域为测量设备无关的密码学,量子投票协议;石润华(1974-),男,博士,教授,博士生导师,主要研究领域为经典密码协议及其应用,量子密码协议及其应用

通讯作者:

石润华,rhshi@ncepu.edu.cn

中图分类号:

TP309

基金项目:

国家自然科学基金(61772001)


Measurement-device-independent Quantum Voting Scheme with Identity Authentication
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [58]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为解决量子通信过程中的身份认证及协议的可实现性问题, 提出一种基于测量设备无关的带身份认证服务器的量子安全直接通信协议, 并依据该协议提出一种量子投票方案. 所提方案利用测量设备无关的量子密钥分配, 完备的量子加密, 以及经典的一次一密等技术, 不仅理论上确保方案的无条件安全性, 而在实际上也避免外部攻击者对测量设备漏洞的攻击. 此外, 所提方案使用BB84态的弱相干脉冲作为量子资源, 仅实施单粒子操作, 以及识别Bell态的测量. 因此, 基于现有技术, 所提方案具有良好的可实现性. 同时所提方案扩展了身份认证功能, 引入比特承诺, 使得监票人可以验证投票信息的完整性和正确性. 仿真结果和分析表明, 所提方案是正确的并具有理论上无条件的安全性, 即信息理论安全. 相较于现有的量子投票方案, 所提方案具有更好的可行性.

    Abstract:

    This study proposes a measurement-device-independent (MDI) quantum secure direct communication (QSDC) protocol with an identity authentication server to solve the problems concerning identity authentication and protocol feasibility during quantum communication and further puts forward a quantum voting scheme on the basis of the proposed MDI-QSDC protocol. This scheme takes advantage of various technologies, such as MDI quantum key distribution, perfect quantum encryption, and the classical one-time pad. In this way, it not only ensures its unconditional security in theory but also avoids the attack of the vulnerabilities of the measurement equipment by outside attackers in practice. Furthermore, this scheme takes the weak coherent pulses in the BB84 state as quantum resources and only performs single-particle operations and the measurements for identifying Bell states. As a result, this scheme is highly feasible for the present technologies. In addition, it extends the identity authentication function and enables the scrutineer to verify the integrity and correctness of voting information by adopting the Bit Commitment. Simulation results and analysis show that the proposed scheme is correct and has unconditional security in theory, i.e., information-theoretic security. Compared with the existing quantum voting schemes, the proposed scheme is more feasible.

    参考文献
    [1] Fujioka A, Okamoto T, Ohta K. A practical secret voting scheme for large scale elections. In: Proc. of the 1992 Workshop on the Theory and Application of Cryptographic Techniques. Gold Coast: Springer, 1992. 244–251.
    [2] Elgamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 1985, 31(4): 469–472. [doi: 10.1109/TIT.1985.1057074]
    [3] Brooks M. Beyond quantum supremacy: The hunt for useful quantum computers. Nature, 2019, 574(7776): 19–21. [doi: 10.1038/d41586-019-02936-3]
    [4] Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FGSL, Buell DA, Burkett B, Chen Y, Chen ZJ, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerin K, Habegger S, Harrigan MP, Hartmann MJ, Ho A, Hoffmann M, Huang T, Humble TS, Isakov SV, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Kelly J, Klimov PV, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, Mcclean JR, Mcewen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu MY, Ostby E, Petukhov A, Platt JC, Quintana C, Rieffel EG, Roushan P, Rubin NC, Sank D, Satzinger KJ, Smelyanskiy V, Sung KJ, Trevithick MD, Vainsencher A, Villalonga B, White T, Yao ZJ, Yeh P, Zalcman A, Neven H, Martinis JM. Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574(7779): 505–510. [doi: 10.1038/s41586-019-1666-5]
    [5] 龙桂鲁. 量子计算机的研发进展与未来展望. 人民论坛·学术前沿, 2021, (7): 44–56. [doi: 10.16619/j.cnki.rmltxsqy.2021.07.005]
    Long GL. The development and prospect of quantum computer. Frontiers, 2021, (7): 44–56 (in Chinese with English abstract). [doi: 10.16619/j.cnki.rmltxsqy.2021.07.005]
    [6] 吴伟彬, 刘哲, 杨昊, 张吉鹏. 后量子密码算法的侧信道攻击与防御综述. 软件学报, 2021, 32(4): 1165–1185. http://www.jos.org.cn/1000-9825/6165.htm
    Wu WB, Liu Z, Yang H, Zhang JP. Survey of side-channel attacks and countermeasures on post-quantum cryptography. Ruan Jian Xue Bao/Journal of Software, 2021, 32(4): 1165-1185 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6165.htm
    [7] 俞惠芳, 付帅凤. 抗量子计算的多变量盲签名方案. 软件学报, 2021, 32(9): 2935-2944. http://www.jos.org.cn/1000-9825/6019.htm
    Yu HF, Fu SF. Post-quantum blind signature scheme based on multivariate cryptosystem. Ruan Jian Xue Bao/Journal of Software, 2021, 32(9): 2935-2944 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6019.htm
    [8] Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Reviews of Modern Physics, 2002, 74(1): 145-195. [doi: 10.1103/RevModPhys.74.145]
    [9] Wootters WK, Zurek WH. A single quantum cannot be cloned. Nature, 1982, 299(5886): 802–803. [doi: 10.1038/299802a0]
    [10] 陈秀波. 量子安全通信及其线路模拟的研究 [博士学位论文]. 北京: 北京邮电大学, 2009.
    Chen XB. Research on quantum secure communication and its circuit simulation [Ph.D. Thesis]. Beijing: Beijing University of Post and Telecommunications, 2009 (in Chinese with English abstract).
    [11] Bennett CH, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Proc. of the 1984 Int’l Conf. on Computers, Systems & Signal Processing. Bangalore: IEEE, 1984. 175–179.
    [12] Long GL, Liu XS. Theoretically efficient high-capacity Quantum-key-distribution scheme. Physical Review A, 2002, 65(3): 032302. [doi: 10.1103/PhysRevA.65.032302]
    [13] Lucamarini M, Mancini S. Secure deterministic communication without entanglement. Physical Review Letters, 2005, 94(14): 140501. [doi: 10.1103/PhysRevLett.94.140501]
    [14] 昌燕. 量子安全通信协议理论研究 [博士学位论文]. 成都: 电子科技大学, 2016.
    Chang Y. The theoretical research on quantum secure communication protocol [Ph.D. Thesis]. Chengdu: University of Electronic Science and Technology of China, 2016 (in Chinese with English abstract).
    [15] Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Physical Review Letters, 2002, 89(18): 187902. [doi: 10.1103/PhysRevLett.89.187902]
    [16] Hillery M. Quantum voting and privacy protection: First steps. International Society of Optical Engineering, 2006, 41(5): 1117–1119. [doi: 10.1117/2.1200610.0419] (查阅所有网上资料, 未找到本条文献标黄信息, 请联系作者确认)
    [17] Vaccaro JA, Spring J, Chefles A. Quantum protocols for anonymous voting and surveying. Physical Review A, 2007, 75(1): 012333. [doi: 10.1103/PhysRevA.75.012333]
    [18] Xue P, Zhang X. A simple quantum voting scheme with multi-qubit entanglement. Scientific Reports, 2017, 7(1): 7586. [doi: 10.1038/s41598-017-07976-1]
    [19] Niu XF, Zhang JZ, Xie SC, Chen BQ. An improved quantum voting scheme. International Journal of Theoretical Physics, 2018, 57(10): 3200–3206. [doi: 10.1007/s10773-018-3837-9]
    [20] Zhang S, Wang SL, Wang Q, Shi RH. Quantum anonymous voting protocol with the privacy protection of the candidate. International Journal of Theoretical Physics, 2019, 58(10): 3323–3332. [doi: 10.1007/s10773-019-04205-5]
    [21] Li YR, Jiang DH, Zhang YH, Liang XQ. A quantum voting protocol using single-particle states. Quantum Information Processing, 2021, 20(3): 110. [doi: 10.1007/s11128-021-03048-6]
    [22] Wang QL, Yu CH, Gao F, Qi HY, Wen QY. Self-tallying quantum anonymous voting. Physical Review A, 2016, 94(2): 022333. [doi: 10.1103/PhysRevA.94.022333]
    [23] 秦加奇, 石润华, 张瑞. 基于受控量子安全直接通信的量子投票协议. 量子电子学报, 2018, 35(5): 558–566.
    Qin JQ, Shi RH, Zhang R. Quantum voting protocol based on controlled quantum secure direct communication. Chinese Journal of Quantum Electronics, 2018, 35(5): 558–566 (in Chinese with English abstract).
    [24] Zhang X, Zhang JZ, Xie SC. A secure quantum voting scheme based on quantum group blind signature. International Journal of Theoretical Physics, 2020, 59(3): 719–729. [doi: 10.1007/s10773-019-04358-3]
    [25] Zhang KJ, Sun Y, Song TT, Zuo HJ. Cryptanalysis of the quantum group signature protocols. International Journal of Theoretical Physics, 2013, 52(11): 4163–4173. [doi: 10.1007/s10773-013-1729-6]
    [26] Shi RH, Qin JQ, Liu B, Zhang MW. Anonymous quantum voting protocol based on Chinese remainder theorem. The European Physical Journal D, 2021, 75(1): 20. [doi: 10.1140/epjd/s10053-020-00014-2]
    [27] Makarov V, Hjelme DR. Faked states attack on quantum cryptosystems. Journal of Modern Optics, 2005, 52(5): 691–705. [doi: 10.1080/09500340410001730986]
    [28] Qi B, Fung CHF, Lo HK, Ma XF. Time-shift attack in practical quantum cryptosystems. Quantum Information & Computation, 2007, 7(1): 73–82.
    [29] Makarov V. Controlling passively quenched single photon detectors by bright light. New Journal of Physics, 2009, 11(6): 065003. [doi: 10.1088/1367-2630/11/6/065003]
    [30] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J, Makarov V. Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics, 2010, 4(10): 686–689. [doi: 10.1038/nphoton.2010.214]
    [31] Weier H, Krauss H, Rau M, Fürst M, Nauerth S, Weinfurter H. Quantum eavesdropping without interception: An attack exploiting the dead time of single-photon detectors. New Journal of Physics, 2011, 13(7): 073024. [doi: 10.1088/1367-2630/13/7/073024]
    [32] Lo HK, Curty M, Qi B. Measurement-device-independent quantum key distribution. Physical Review Letters, 2012, 108(13): 130503. [doi: 10.1103/PhysRevLett.108.130503]
    [33] Xu FH, Curty M, Qi B, Lo HK. Measurement-device-independent quantum cryptography. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(3): 148–158. [doi: 10.1109/JSTQE.2014.2381460]
    [34] Zhou ZR, Sheng YB, Niu PH, Yin LG, Long GL, Hanzo L. Measurement-device-independent quantum secure direct communication. Science China Physics, Mechanics & Astronomy, 2020, 63(3): 230362. [doi: 10.1007/s11433-019-1450-8]
    [35] Cui ZX, Zhong W, Zhou L, Sheng YB. Measurement-device-independent quantum key distribution with hyper-encoding. Science China Physics, Mechanics & Astronomy, 2019, 62(11): 110311. [doi: 10.1007/s11433-019-1438-6]
    [36] Rong ZB, Qiu DW, Mateus P, Zou XF. Mediated semi-quantum secure direct communication. Quantum Information Processing, 2021, 20(2): 58. [doi: 10.1007/s11128-020-02965-2]
    [37] Choi JW, Kang MS, Park CH, Yang HJ, Han SW. Measurement-device-independent mutual quantum entity authentication. Quantum Information Processing, 2021, 20(4): 152. [doi: 10.1007/s11128-021-03093-1]
    [38] 周星宇. 实用化测量设备无关量子密钥分配协议的改进与实现研究 [博士学位论文]. 南京: 南京邮电大学, 2020.
    Zhou XY. Research on performance optimization and realization of practical measurement-device-independent quantum key distribution [Ph.D. Thesis]. Nanjing: Nanjing University of Posts and Telecommunications, 2020 (in Chinese with English abstract).
    [39] 张春辉. 新型量子密码的方案设计与实验验证 [博士学位论文]. 南京: 南京邮电大学, 2020.
    Zhang CH. Design and implementation of new quantum cryptographic schemes [Ph.D. Thesis]. Nanjing: Nanjing University of Posts and Telecommunications, 2020 (in Chinese with English abstract).
    [40] 张智明. 量子光学. 北京: 科学出版社, 2015. 14, 65.
    Zhang ZM. Quantum Optics. Beijing: Science Press, 2015. 14, 65 (in Chinese).
    [41] Hong CK, Ou ZY, Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Physical Review Letters, 1987, 59(18): 2044–2046. [doi: 10.1103/PhysRevLett.59.2044]
    [42] 王超. 测量设备无关量子密钥分配的实用化研究 [博士学位论文]. 合肥: 中国科学技术大学, 2018.
    Wang C. Practical research of measurement-device-independent quantum key distribution [Ph.D. Thesis]. Hefei: University of Science and Technology of China, 2018 (in Chinese with English Abstract).
    [43] Boykin PO, Roychowdhury V. Optimal encryption of quantum bits. Physical Review A, 2003, 67(4): 042317. [doi: 10.1103/PhysRevA.67.042317]
    [44] Mayers D. Unconditional security in quantum cryptography. Journal of the ACM, 2001, 48(3): 351–406. [doi: 10.1145/382780.382781]
    [45] Shor PW, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Physical Review Letters, 2000, 85(2): 441–444. [doi: 10.1103/PhysRevLett.85.441]
    [46] Lo HK, Chau HF. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283(5410): 2050–2056. [doi: 10.1126/science.283.5410.2050]
    [47] Wang ZY. Quantum secure direct communication and quantum sealed-bid auction with EPR pairs. Communications in Theoretical Physics, 2010, 54(6): 997. [doi: 10.1088/0253-6102/54/6/08]
    [48] Vernam GS. Cipher printing telegraph systems for secret wire and radio telegraphic communications. Transactions of the American Institute of Electrical Engineers, 1926, 45: 295–301. [doi: 10.1109/t-aiee.1926.5061224]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

柯唯阳,石润华.基于测量设备无关的可认证身份量子投票方案.软件学报,2023,34(11):5376-5391

复制
分享
文章指标
  • 点击次数:441
  • 下载次数: 1877
  • HTML阅读次数: 1329
  • 引用次数: 0
历史
  • 收稿日期:2022-03-09
  • 最后修改日期:2022-05-31
  • 在线发布日期: 2023-06-16
  • 出版日期: 2023-11-06
文章二维码
您是第19984739位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号