This study proposes a measurement-device-independent (MDI) quantum secure direct communication (QSDC) protocol with an identity authentication server to solve the problems concerning identity authentication and protocol feasibility during quantum communication and further puts forward a quantum voting scheme on the basis of the proposed MDI-QSDC protocol. This scheme takes advantage of various technologies, such as MDI quantum key distribution, perfect quantum encryption, and the classical one-time pad. In this way, it not only ensures its unconditional security in theory but also avoids the attack of the vulnerabilities of the measurement equipment by outside attackers in practice. Furthermore, this scheme takes the weak coherent pulses in the BB84 state as quantum resources and only performs single-particle operations and the measurements for identifying Bell states. As a result, this scheme is highly feasible for the present technologies. In addition, it extends the identity authentication function and enables the scrutineer to verify the integrity and correctness of voting information by adopting the Bit Commitment. Simulation results and analysis show that the proposed scheme is correct and has unconditional security in theory, i.e., information-theoretic security. Compared with the existing quantum voting schemes, the proposed scheme is more feasible.
[1] Fujioka A, Okamoto T, Ohta K. A practical secret voting scheme for large scale elections. In: Proc. of the 1992 Workshop on the Theory and Application of Cryptographic Techniques. Gold Coast: Springer, 1992. 244–251.
[2] Elgamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 1985, 31(4): 469–472. [doi: 10.1109/TIT.1985.1057074]
[3] Brooks M. Beyond quantum supremacy: The hunt for useful quantum computers. Nature, 2019, 574(7776): 19–21. [doi: 10.1038/d41586-019-02936-3]
[4] Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FGSL, Buell DA, Burkett B, Chen Y, Chen ZJ, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerin K, Habegger S, Harrigan MP, Hartmann MJ, Ho A, Hoffmann M, Huang T, Humble TS, Isakov SV, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Kelly J, Klimov PV, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, Mcclean JR, Mcewen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu MY, Ostby E, Petukhov A, Platt JC, Quintana C, Rieffel EG, Roushan P, Rubin NC, Sank D, Satzinger KJ, Smelyanskiy V, Sung KJ, Trevithick MD, Vainsencher A, Villalonga B, White T, Yao ZJ, Yeh P, Zalcman A, Neven H, Martinis JM. Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574(7779): 505–510. [doi: 10.1038/s41586-019-1666-5]
Long GL. The development and prospect of quantum computer. Frontiers, 2021, (7): 44–56 (in Chinese with English abstract). [doi: 10.16619/j.cnki.rmltxsqy.2021.07.005]
Wu WB, Liu Z, Yang H, Zhang JP. Survey of side-channel attacks and countermeasures on post-quantum cryptography. Ruan Jian Xue Bao/Journal of Software, 2021, 32(4): 1165-1185 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6165.htm
Yu HF, Fu SF. Post-quantum blind signature scheme based on multivariate cryptosystem. Ruan Jian Xue Bao/Journal of Software, 2021, 32(9): 2935-2944 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6019.htm
[8] Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Reviews of Modern Physics, 2002, 74(1): 145-195. [doi: 10.1103/RevModPhys.74.145]
[9] Wootters WK, Zurek WH. A single quantum cannot be cloned. Nature, 1982, 299(5886): 802–803. [doi: 10.1038/299802a0]
Chen XB. Research on quantum secure communication and its circuit simulation [Ph.D. Thesis]. Beijing: Beijing University of Post and Telecommunications, 2009 (in Chinese with English abstract).
[11] Bennett CH, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Proc. of the 1984 Int’l Conf. on Computers, Systems & Signal Processing. Bangalore: IEEE, 1984. 175–179.
[12] Long GL, Liu XS. Theoretically efficient high-capacity Quantum-key-distribution scheme. Physical Review A, 2002, 65(3): 032302. [doi: 10.1103/PhysRevA.65.032302]
[13] Lucamarini M, Mancini S. Secure deterministic communication without entanglement. Physical Review Letters, 2005, 94(14): 140501. [doi: 10.1103/PhysRevLett.94.140501]
[14] 昌燕. 量子安全通信协议理论研究 [博士学位论文]. 成都: 电子科技大学, 2016.
Chang Y. The theoretical research on quantum secure communication protocol [Ph.D. Thesis]. Chengdu: University of Electronic Science and Technology of China, 2016 (in Chinese with English abstract).
[15] Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Physical Review Letters, 2002, 89(18): 187902. [doi: 10.1103/PhysRevLett.89.187902]
[16] Hillery M. Quantum voting and privacy protection: First steps. International Society of Optical Engineering, 2006, 41(5): 1117–1119. [doi: 10.1117/2.1200610.0419] (查阅所有网上资料, 未找到本条文献标黄信息, 请联系作者确认)
[17] Vaccaro JA, Spring J, Chefles A. Quantum protocols for anonymous voting and surveying. Physical Review A, 2007, 75(1): 012333. [doi: 10.1103/PhysRevA.75.012333]
[18] Xue P, Zhang X. A simple quantum voting scheme with multi-qubit entanglement. Scientific Reports, 2017, 7(1): 7586. [doi: 10.1038/s41598-017-07976-1]
[19] Niu XF, Zhang JZ, Xie SC, Chen BQ. An improved quantum voting scheme. International Journal of Theoretical Physics, 2018, 57(10): 3200–3206. [doi: 10.1007/s10773-018-3837-9]
[20] Zhang S, Wang SL, Wang Q, Shi RH. Quantum anonymous voting protocol with the privacy protection of the candidate. International Journal of Theoretical Physics, 2019, 58(10): 3323–3332. [doi: 10.1007/s10773-019-04205-5]
[21] Li YR, Jiang DH, Zhang YH, Liang XQ. A quantum voting protocol using single-particle states. Quantum Information Processing, 2021, 20(3): 110. [doi: 10.1007/s11128-021-03048-6]
Qin JQ, Shi RH, Zhang R. Quantum voting protocol based on controlled quantum secure direct communication. Chinese Journal of Quantum Electronics, 2018, 35(5): 558–566 (in Chinese with English abstract).
[24] Zhang X, Zhang JZ, Xie SC. A secure quantum voting scheme based on quantum group blind signature. International Journal of Theoretical Physics, 2020, 59(3): 719–729. [doi: 10.1007/s10773-019-04358-3]
[25] Zhang KJ, Sun Y, Song TT, Zuo HJ. Cryptanalysis of the quantum group signature protocols. International Journal of Theoretical Physics, 2013, 52(11): 4163–4173. [doi: 10.1007/s10773-013-1729-6]
[26] Shi RH, Qin JQ, Liu B, Zhang MW. Anonymous quantum voting protocol based on Chinese remainder theorem. The European Physical Journal D, 2021, 75(1): 20. [doi: 10.1140/epjd/s10053-020-00014-2]
[27] Makarov V, Hjelme DR. Faked states attack on quantum cryptosystems. Journal of Modern Optics, 2005, 52(5): 691–705. [doi: 10.1080/09500340410001730986]
[28] Qi B, Fung CHF, Lo HK, Ma XF. Time-shift attack in practical quantum cryptosystems. Quantum Information & Computation, 2007, 7(1): 73–82.
[29] Makarov V. Controlling passively quenched single photon detectors by bright light. New Journal of Physics, 2009, 11(6): 065003. [doi: 10.1088/1367-2630/11/6/065003]
[30] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J, Makarov V. Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics, 2010, 4(10): 686–689. [doi: 10.1038/nphoton.2010.214]
[31] Weier H, Krauss H, Rau M, Fürst M, Nauerth S, Weinfurter H. Quantum eavesdropping without interception: An attack exploiting the dead time of single-photon detectors. New Journal of Physics, 2011, 13(7): 073024. [doi: 10.1088/1367-2630/13/7/073024]
[32] Lo HK, Curty M, Qi B. Measurement-device-independent quantum key distribution. Physical Review Letters, 2012, 108(13): 130503. [doi: 10.1103/PhysRevLett.108.130503]
[33] Xu FH, Curty M, Qi B, Lo HK. Measurement-device-independent quantum cryptography. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(3): 148–158. [doi: 10.1109/JSTQE.2014.2381460]
[34] Zhou ZR, Sheng YB, Niu PH, Yin LG, Long GL, Hanzo L. Measurement-device-independent quantum secure direct communication. Science China Physics, Mechanics & Astronomy, 2020, 63(3): 230362. [doi: 10.1007/s11433-019-1450-8]
[35] Cui ZX, Zhong W, Zhou L, Sheng YB. Measurement-device-independent quantum key distribution with hyper-encoding. Science China Physics, Mechanics & Astronomy, 2019, 62(11): 110311. [doi: 10.1007/s11433-019-1438-6]
[36] Rong ZB, Qiu DW, Mateus P, Zou XF. Mediated semi-quantum secure direct communication. Quantum Information Processing, 2021, 20(2): 58. [doi: 10.1007/s11128-020-02965-2]
[37] Choi JW, Kang MS, Park CH, Yang HJ, Han SW. Measurement-device-independent mutual quantum entity authentication. Quantum Information Processing, 2021, 20(4): 152. [doi: 10.1007/s11128-021-03093-1]
Zhou XY. Research on performance optimization and realization of practical measurement-device-independent quantum key distribution [Ph.D. Thesis]. Nanjing: Nanjing University of Posts and Telecommunications, 2020 (in Chinese with English abstract).
Zhang CH. Design and implementation of new quantum cryptographic schemes [Ph.D. Thesis]. Nanjing: Nanjing University of Posts and Telecommunications, 2020 (in Chinese with English abstract).
[40] 张智明. 量子光学. 北京: 科学出版社, 2015. 14, 65.
Zhang ZM. Quantum Optics. Beijing: Science Press, 2015. 14, 65 (in Chinese).
[41] Hong CK, Ou ZY, Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Physical Review Letters, 1987, 59(18): 2044–2046. [doi: 10.1103/PhysRevLett.59.2044]
Wang C. Practical research of measurement-device-independent quantum key distribution [Ph.D. Thesis]. Hefei: University of Science and Technology of China, 2018 (in Chinese with English Abstract).
[43] Boykin PO, Roychowdhury V. Optimal encryption of quantum bits. Physical Review A, 2003, 67(4): 042317. [doi: 10.1103/PhysRevA.67.042317]
[44] Mayers D. Unconditional security in quantum cryptography. Journal of the ACM, 2001, 48(3): 351–406. [doi: 10.1145/382780.382781]
[45] Shor PW, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Physical Review Letters, 2000, 85(2): 441–444. [doi: 10.1103/PhysRevLett.85.441]
[46] Lo HK, Chau HF. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283(5410): 2050–2056. [doi: 10.1126/science.283.5410.2050]
[47] Wang ZY. Quantum secure direct communication and quantum sealed-bid auction with EPR pairs. Communications in Theoretical Physics, 2010, 54(6): 997. [doi: 10.1088/0253-6102/54/6/08]
[48] Vernam GS. Cipher printing telegraph systems for secret wire and radio telegraphic communications. Transactions of the American Institute of Electrical Engineers, 1926, 45: 295–301. [doi: 10.1109/t-aiee.1926.5061224]