资源独立工作流可满足性的最小增量模式回溯
作者:
作者单位:

作者简介:

翟治年(1977-),男,博士,讲师,主要研究领域为约束求解,组合优化,访问控制,工作流;雷景生(1966-),男,博士,教授,主要研究领域为数据科学与大数据,机器学习,人工智能应用;卢亚辉(1976-),男,博士,副教授,CCF专业会员,主要研究领域为数据挖掘,金融大数据,博弈论,业务过程建模与分析;向坚(1976-),男,博士,副教授,CCF专业会员,主要研究领域为人工智能,机器学习,多媒体分析与检索,计算机动画;刘关俊(1978-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为Petri网理论与应用,模型检测,机器学习,人机物系统,工作流系统,无人机协同系统;吴茗蔚(1977-),女,博士,教授,主要研究领域为智能感知,通信技术,机器学习.

通讯作者:

翟治年,E-mail:zhaizhinian@zust.edu.cn

中图分类号:

基金项目:

国家自然科学基金(62172299, 61972357); 浙江省教育厅一般科研项目(Y201737476)


Minimum Incremental Pattern Backtracking for Resource-independent Workflow Satisfiability Problem
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    工作流可满足性是业务安全规划的基本问题, 正在面临高资源配比(资源数n显著大于步骤数k)造成的性能挑战. 在资源独立约束下, 其最高效求解途径是模式空间上的增量回溯法IPB. 为克服结点真实性验证的性能瓶颈, 它增量计算模式k指派(二部)图及其(左完备)匹配, 分别需要O(kn)和O(k2)时间. 利用父子模式的原子差异增量计算完全指派图, 只需O(n)时间, 特别是其实际性能, 将随模式块规模增长迅速提高. 但该图的O(kn)规模导致了同样的增量匹配时间. 进而引入完备k核心匹配概念, 证明其存在性等价于左完备匹配, 且其增量计算时间为O(k2). 由此, 建立了时间复杂度更低的最小增量模式回溯法. 在含互斥和两种全局值势约束而授权比例约为1/4的扩展公开实例集上进行实验, 结果表明: 当n/k=10(及n/k=100), 而k变化时, 该方法较IPB有平均超过2(及5)倍、最低1.5(及2.9)倍的性能优势; 当k=18(及k=36), 而n/k=2~4096(及n/k=2~2048)时, 该方法有平均超过2.6(及3.6)倍优势; 而较2021年Minizinc挑战赛的冠军求解器Google OR-Tools CP-SAT, 该方法最低有超过3倍优势.

    Abstract:

    Workflow satisfiability problem is an elemental issue in the security planning of business process, and it is facing the performance challenge caused by high resource ratio (the number n of resources is significantly greater than the number k of steps). Under resource-independent constraints, its most efficient approach is incremental pattern backtracking (IPB) in the pattern space. To overcome the performance bottleneck of verifying whether a node is authentic, IPB computes the k-assignment (bipartite) graph of a pattern and its (left complete) matching in an incremental manner, which requires O(kn) and O(k2) time respectively. This study computes a full-assignment graph incrementally with only O(n) time by exploiting the atomic difference between a sub-pattern and its super one, and in particular its actual performance will increase rapidly with the size of a block in pattern. However, the size O(kn) of such a graph will result in the same incremental matching time. Further, this study introduces the concept of complete k core matching and shows that its existence is equivalent to a left complete matching and its incremental computation only costs O(k2) time. Therefore, this study proposes an algorithm of minimum incremental pattern backtracking (MIPB) that is superior to IPB in time complexity. Experiments are conducted on an extended public instance set with constraints of two global value-cardinality types and of the mutual exclusion, and with an authorization ratio of about 1/4. The results show that: when k varies at n/k=10 (n/k=100, respectively), MIPB achieves averagely more than 2 (5, respectively) times and at least 1.5 (2.9, respectively) times advantage of performance compared to IPB; when k=18 (k=36, respectively), and n/k belongs to 2~4096 (2~2048, respectively), MIPB achieves averagely more than 2.6 (3.6, respectively) times advantage. While compared to the champion solver OR-Tools CP-SAT in the 2018~2021 Minizinc Challenges, MIPB achieves at least more than 3 times advantage.

    参考文献
    相似文献
    引证文献
引用本文

翟治年,卢亚辉,刘关俊,雷景生,向坚,吴茗蔚.资源独立工作流可满足性的最小增量模式回溯.软件学报,2023,34(4):1543-1569

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-07
  • 最后修改日期:2022-02-12
  • 录用日期:
  • 在线发布日期: 2023-04-04
  • 出版日期: 2023-04-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号