分布式账本系统性能优化技术综述
作者:
作者简介:

石晶(1993-),女,博士生,CCF学生会员,主要研究领域为区块链系统;张奥(1995-),男,博士生,主要研究领域为区块链应用;白晓颖(1973-),女,博士,研究员,博士生导师,主要研究领域为计算机软件;蔡华谦(1990-),男,博士,特聘副研究员,CCF专业会员,主要研究领域为分布式系统,软件中间件;刘譞哲(1980-),男,博士,研究员,博士生导师,CCF杰出会员,主要研究领域为服务计算,系统软件.

通讯作者:

白晓颖,E-mail:baixy@aibd.ac.cn;刘譞哲,Email:xzl@pku.edu.cn

基金项目:

北京市科技计划(Z201100007720010)


Survey on Performance Optimization Technologies of Distributed Ledger System
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [91]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    分布式账本作为分布式数据管理的体系架构, 通常在多节点之间通过共识机制来共同维护数据记录, 可将数据所有权、传播过程、交易链条等相关信息完整全面地记录在分布的账本中, 并在数据产生、流动的整个生命周期中, 保证数据的不可篡改、不可抵赖, 为确权、维权、审计提供背书. 区块链是一种典型实现. 随着数字货币、数据资产交易等数字经济新应用的发展, 分布式账本技术得到了越来越广泛的关注, 但系统性能是其大规模落地应用的一个主要瓶颈, 账本性能优化成为产业界和学术界一个研究热点. 从账本体系结构、数据结构、共识机制和消息通讯4个方面, 系统地调研分析了分布式账本性能优化的主要方法、关键技术和代表性的解决方案.

    Abstract:

    Distributed ledger (DL), as a distributed data management architecture, maintains data records (the ledgers) across distributed nodes based on consensus mechanisms and protocols. It can comprehensively record all information of data ownership, transmission, and trading chains in distributed ledgers. Additionally, data will be not tampered and denied throughout the life cycle of data production and transactions, providing an endorsement for data rights confirmation, protection, and audit. Blockchain is a typical implementation of DL systems. With the emerging digital economy applications including digital currency and data asset trading, DL technologies receive increasingly widespread attention. However, system performance is one of the key technical bottlenecks for large-scale application of DL systems, and ledger performance optimization has become a focus of the academia and industry. The study investigates the methods, technologies, and typical solutions of DL performance optimization from four perspectives of system architecture, ledger data structure, consensus mechanism, and message communication.

    参考文献
    [1] Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. 2008. https://bitcoin.org/en/bitcoin-paper
    [2] Wood G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper, 2014, 151: 1-32. (查阅所有网上资料, 文献类型不确定是否正确, 请联系作者确认)
    [3] Androulaki E, Barger A, Bortnikov V, Cachin C, Christidis K, de Caro A, Enyeart D, Ferris C, Laventman G, Manevich Y, Muralidharan S, Murthy C, Nguyen B, Sethi M, Singh G, Smith K, Sorniotti A, Stathakopoulou C, Vukolić M, Cocco SW, Yellick J. HyperLedger Fabric: A distributed operating system for permissioned blockchains. In: Proc. of the 13th EuroSys Conf. Porto: ACM, 2018. 30.
    [4] Dai HN, Zheng ZB, Zhang Y. Blockchain for Internet of Things: A survey. IEEE Internet of Things Journal, 2019, 6(5): 8076-8094. [doi: 10.1109/JIOT.2019.2920987]
    [5] Zheng ZB, Xie SA, Dai HN, Chen XP, Wang HM. An overview of blockchain technology: Architecture, consensus, and future trends. In: Proc. of the 2017 IEEE Int’l Congress on Big Data (BigData Congress). Honolulu: IEEE, 2017. 557-564.
    [6] Zheng PL, Zheng ZB, Luo XP, Chen XP, Liu XZ. A detailed and real-time performance monitoring framework for blockchain systems. In: Proc. of the 40th IEEE/ACM Int’l Conf. on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP). Gothenburg: IEEE, 2018. 134-143.
    [7] Zheng XY, Zhu YX, Si XM. A survey on challenges and progresses in blockchain technologies: A performance and security perspective. Applied Sciences, 2019, 9(22): 4731. [doi: 10.3390/app9224731]
    [8] Kuzlu M, Pipattanasomporn M, Gurses L, Rahman S. Performance analysis of a HyperLedger Fabric blockchain framework: Throughput, latency and scalability. In: Proc. of the 2019 IEEE Int’l Conf. on Blockchain (Blockchain). Atlanta: IEEE, 2019. 536-540.
    [9] Hao Y, Li Y, Dong XH, Fang L, Chen P. Performance analysis of consensus algorithm in private blockchain. In: Proc. of the 2018 IEEE Intelligent Vehicles Symp. (IV). Changshu: IEEE, 2018. 280-285.
    [10] Kokoris-Kogias E, Jovanovic P, Gailly N, Khoffi I, Gasser L, Ford BA. Enhancing Bitcoin security and performance with strong consistency via collective signing. In: Proc. of the 25th USENIX Conf. on Security Symp. Austin: USENIX Association, 2016. 279-296.
    [11] Lepore C, Ceria M, Visconti A, Rao UP, Shah KA, Zanolini L. A survey on blockchain consensus with a performance comparison of PoW, PoS and pure PoS. Mathematics, 2020, 8(10): 1782. [doi: 10.3390/math8101782]
    [12] 张彭奕, 宋杰. 区块链共识算法效能优化研究进展. 计算机科学, 2020, 47(12): 296-303. [doi: 10.11896/jsjkx.200700020]
    Zhang PY, Song J. Research advance on efficiency optimization of blockchain consensus algorithms. Computer Science, 2020, 47(12): 296-303 (in Chinese with English abstract). [doi: 10.11896/jsjkx.200700020]
    [13] Zhou QH, Huang HW, Zheng ZB, Bian J. Solutions to scalability of blockchain: A survey. IEEE Access, 2020, 8: 16440-16455. [doi: 10.1109/ACCESS.2020.2967218]
    [14] 毛志来, 刘亚楠, 孙惠平, 陈钟. 区块链性能扩展与安全研究. 信息网络安全, 2020, 20(3): 56-64. [doi: 10.3969/j.issn.1671-1122.2020.03.008]
    Mao ZL, Liu YN, Sun HP, Chen Z. Research on blockchain performance scalability and security. Netinfo Security, 2020, 20(3): 56-64 (in Chinese with English abstract). [doi: 10.3969/j.issn.1671-1122.2020.03.008]
    [15] Luu L, Narayanan V, Zheng CD, Baweja K, Gilbert SL, Saxena P. A secure sharding protocol for open blockchains. In: Proc. of the 2016 ACM SIGSAC Conf. on Computer and Communications Security. Vienna: ACM, 2016. 17-30.
    [16] Al-Bassam M, Sonnino A, Bano S, Hrycyszyn D, Danezis G. Chainspace: A sharded smart contracts platform. arXiv:1708.03778, 2017.
    [17] Zamani M, Movahedi M, Raykova M. RapidChain: Scaling blockchain via full sharding. In: Proc. of the 2018 ACM SIGSAC Conf. on Computer and Communications Security. Toronto: ACM, 2018. 931-948.
    [18] Wang JP, Wang H. Monoxide: Scale out blockchain with asynchronous consensus zones. In: Proc. of the 16th USENIX Conf. on Networked Systems Design and Implementation. Boston: USENIX Association, 2019. 95-112.
    [19] What is blockchain sharding? 2021. https://thepalmtree.network/en/what-is-blockchain-sharding/
    [20] Kokoris-Kogias E, Jovanovic P, Gasser L, Gailly L, Syta E, Ford B. OmniLedger: A secure, scale-out, decentralized ledger via sharding. In: Proc. of the 2018 IEEE Symp. on Security and Privacy (SP). San Francisco: IEEE, 2018. 583-598.
    [21] Antchain Introduction. 2020. https://antchain.antgroup.com/docs/11/171879
    [22] Thunder Chain. 2021. https://blockchain.xunlei.com/site/docnew.html#11
    [23] NEAR Protocol Specification. 2020. https://nomicon.io/Architecture.html
    [24] Pagh R, Rodler FF. Cuckoo hashing. Journal of Algorithms, 2004, 51(2): 122-144. [doi: 10.1016/j.jalgor.2003.12.002]
    [25] WeCross. 2021. https://gitee.com/WeBank/WeCross
    [26] Back A, Corallo M, Dashjr L, Friedenbach M, Maxwell G, Miller A, Poelstra A, Timón J, Wuille P. Enabling blockchain innovations with pegged sidechains. 2014. https://www.blockstream.com/sidechains.pdf
    [27] The launch of the liquid network. 2018. https://blockstream.com/2018/10/10/en-liquid-launch/
    [28] Lerner SD. RSK. RootStock Core Team. White Paper, 2015.
    [29] Lerner SD. RSK, 2015.https://academy.rsk.dev.br/courses/dev/03/rsk
    [30] Thomas S, Schwartz E. A protocol for interledger payments. 2015. https://interledger.org/interledger.pdf
    [31] Alt chains and atomic transfers. 2021. https://bitcointalk.org/index.php?topic=193281.0
    [32] Wood G. Polkadot: Vision for a heterogeneous multi-chain framework. White Paper. 2016.
    [33] Kwon J, Buchman E. A network of distributed ledgers. Technical Report, Cosmos, 2018. 1-41.
    [34] Poon J, Buterin V. Plasma: Scalable autonomous smart contracts. White Paper, 2017. 1-47.
    [35] Qi J, Chen XS, Jiang YP, Jiang JY, Shen TX, Zhao SX, Wang S, Zhang G, Chen L, Au MHA, Cui HM. BIDL: A high-throughput, low-latency permissioned blockchain framework for datacenter networks. In: Proc. of the 28th ACM SIGOPS Symp. on Operating Systems Principles. ACM, 2021. 18-34.
    [36] Li CX, Li PL, Zhou D, Xu W, Long F, Yao A. Scaling Nakamoto consensus to thousands of transactions per second. arXiv:1805.03870, 2018.
    [37] Li CX, Li PL, Zhou D, Yang Z, Wu M, Yang G, Xu W, Long F, Chi-Chuih A. A decentralized blockchain with high throughput and fast confirmation. In: Proc. of the 2020 USENIX Annual Technical Conf. USENIX ATC 20. 2020. 515-528.
    [38] Poon J, Dryja T. The bitcoin lightning network: Scalable off-chain instant payments. 2015. https://www.readkong.com/page/the-bitcoin-lightning-network-scalable-o-chain-instant-8521874
    [39] Raiden Network 2.0.0 Documentation. https://raiden-network.readthedocs.io/en/stable/
    [40] Roll_up. 2018. https://github.com/barryWhiteHat/roll_up
    [41] Rollups. 2022. https://ethereum.org/en/developers/docs/scaling/layer-2-rollups/#rollups
    [42] Teutsch J, Reitwießner C. Truebit: A scalable verification solution for blockchains. arXiv:1908.04756, 2019.
    [43] Bitcoin Unlimited FAQ. 2022. https://www.bitcoinunlimited.info/faq/what-is-bu
    [44] Garzik J. bip-0102.mediawiki. 2015. https://github.com/bitcoin/bips/blob/master/bip-0102.mediawiki
    [45] Reiff N. Bitcoin vs. Bitcoin Cash: What is the difference? 2022. https://www.investopedia.com/tech/bitcoin-vs-bitcoin-cash-whats-difference/
    [46] Kiayias A, Panagiotakos G. Speed-security tradeoffs in blockchain protocols. IACR Cryptol. ePrint Arch., 2015, 2015: 1019. (查阅所有网上资料, 文献类型和内容不确定是否正确, 请联系作者确认)
    [47] Sompolinsky Y, Zohar A. Secure high-rate transaction processing in Bitcoin. In: Proc. of the 19th Int’l Conf. on Financial Cryptography and Data Security. San Juan: Springer, 2015. 507-527.
    [48] Segregated Witness. 2015. https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
    [49] 高政风, 郑继来, 汤舒扬, 龙宇, 刘志强, 刘振, 谷大武. 基于 DAG 的分布式账本共识机制研究. 软件学报, 2020, 31(4): 1124-1142. http://www.jos.org.cn/1000-9825/5982.htm
    Gao ZF, Zheng JL, Tang SY, Long Y, Liu ZQ, Liu Z, Gu DW. State-of-the-art survey of consensus mechanisms on dag-based distributed ledger. Ruan Jian Xue Bao/Journal of Software, 2020, 31(4): 1124-1142 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5982.htm
    [50] Churyumov A. Byteball: A decentralized system for storage and transfer of value. 2016. https://byteball.org/Byteball.pdf
    [51] 曹源, 张翀, 丁兆云, 姜新文. DAG区块链技术: 原理与实践. 北京: 机械工业出版社, 2018.
    Cao Y, Zhang C, Ding ZY, Jiang XW. Blockchain Technology on DAG: Principle and Practice. Beijing: Machinery Industry Press, 2018 (in Chinese).
    [52] Sompolinsky Y, Lewenberg Y, Zohar A. SPECTRE: A fast and scalable cryptocurrency protocol. IACR Cryptol. ePrint Arch., 2016, 2016: 1159. (查阅所有网上资料, 文献类型和内容不确定是否正确, 请联系作者确认)
    [53] Sompolinsky Y, Wyborski S, Zohar A. PHANTOM and GHOSTDAG: A Scalable Generalization of Nakamoto Consensus. In: Proc. of the 3rd ACM Conf. on Advances in Financial Technologies. 2021. 51-70.
    [54] 吴仪. 一种基于DAG技术的联盟账本共识机制的设计与实现 [硕士学位论文]. 北京: 北京大学, 2020.
    Wu Yi. Design and implementation of a consortium ledger consensus based on DAG technology [MS. Thesis]. Beijing: Peking University, 2020 (in Chinese with English abstract).
    [55] BDLedger White paper. 2021. https://public.internetapi.cn/?dir=docs
    [56] Lerner SD. DagCoin: A cryptocurrency without blocks. White Paper, 2015.
    [57] Silvano WF, Marcelino R. Iota tangle: A cryptocurrency to communicate internet-of-things data. Future Generation Computer Systems, 2020, 112: 307-319. [doi: 10.1016/j.future.2020.05.047]
    [58] Lamport L, Shostak R, Pease M. The Byzantine generals problem. In: Malkhi D, ed. Concurrency: The Works of Leslie Lamport. San Diego: ACM Books, 2019. 203-226.
    [59] Castro M, Liskov B. Practical Byzantine fault tolerance. In: Proc. of the 3rd Symp. on Operating Systems Design and Implementation. New Orleans: USENIX Association, 1999. 173-186.
    [60] Buchman E. Tendermint: Byzantine fault tolerance in the age of blockchains. Technical Report, Guelph: University of Guelph, 2016.
    [61] Yin M, Malkhi D, Reiter MK, Gueta GG, Abraham I. HotStuff: BFT consensus with linearity and responsiveness. In: Proc. of the 2019 ACM Symp. on Principles of Distributed Computing. Toronto: ACM, 2019. 347-356.
    [62] Gueta GG, Abraham I, Grossman S, Malkhi D, Pinkas B, Reiter M, Seredinschi DA, Tamir O, Tomescu A. SBFT: A scalable and decentralized trust infrastructure. In: Proc. of the 49th Annual IEEE/IFIP Int’l Conf. on Dependable Systems and Networks (DSN). Portland: IEEE, 2019. 568-580.
    [63] Lamport L. Paxos made simple. ACM Sigact News, 2001, 32(4): 18-25.
    [64] Burrows M. The Chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th Symp. on Operating Systems Design and Implementation. Seattle: USENIX Association, 2006. 335-350.
    [65] Hunt P, Konar M, Junqueira FP, Reed B. ZooKeeper: Wait-free coordination for internet-scale systems. In: Proc. of the 2010 USENIX Conf. on USENIX Annual Technical Conf. Boston: USENIX Association, 2010. 11.
    [66] Ongaro D, Ousterhout J. In search of an understandable consensus algorithm. In: Proc. of the 2014 USENIX Conf. on USENIX Annual Technical Conf. Philadelphia: USENIX Association, 2014. 305-320.
    [67] Ordering service. 2020. https://hyperledger-fabric.readthedocs.io/zh_CN/latest/orderer/ordering_service.html
    [68] Larimer D. Dpos consensus algorithm-the missing white paper: Steemit, 2017. https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper
    [69] Wang Q, Yu JS, Peng ZN, et al. Security analysis on dBFT protocol of NEO. In: Proc of the 24th Int’l Conf. on Financial Cryptography and Data Security. Kota Kinabalu: Springer, 2020. 20-31.
    [70] Xu B, Luthra D, Cole Z, Blakely N. 2018. EOS: An architectural, performance, and economic analysis. https://hackernoon.com/eos-an-architectural-performance-and-economic-analysis-43a466064712
    [71] Eyal I, Gencer AE, Sirer EG, van Renesse R. Bitcoin-NG: A scalable blockchain protocol. In: Proc. of the 13th USENIX Conf. on Networked Systems Design and Implementation. Santa: USENIX Association, 2016. 45-59.
    [72] Chen J, Micali S. Algorand: A secure and efficient distributed ledger. Theoretical Computer Science, 2019, 777: 155-183. [doi: 10.1016/j.tcs.2019.02.001]
    [73] Tseng YC, Ni SY, Chen YS, Sheu JP. The broadcast storm problem in a mobile ad hoc network. Wireless Networks, 2002, 8(2-3): 153-167. [doi: 10.1023/A:1013763825347]
    [74] Maymounkov P, Mazières D. Kademlia: A peer-to-peer information system based on the XOR metric. In: Proc. of the 1st Int’l Workshop on Peer-to-peer Systems. Cambridge: Springer, 2002. 53-65.
    [75] Corallo M. Compact Block Relay. 2016. https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
    [76] Analysis of bitcoin transaction size trends. 2015. https://tradeblock.com/blog/analysis-of-bitcoin-transaction-size-trends
    [77] Ding DH, Jiang X, Wang JP, Wang H, Zhang XB, Sun Y. Txilm: Lossy block compression with salted short hashing. arXiv: 1906.06500v1, 2019.
    [78] Goodrich MT, Mitzenmacher M. Invertible Bloom lookup tables. In: Proc. of the 49th Annual Allerton Conf. on Communication, Control, and Computing (Allerton). Monticello: IEEE, 2011. 792-799.
    [79] Broder A, Mitzenmacher M. Network applications of bloom filters: A survey. Internet Mathematics, 2004, 1(4): 485-509. [doi: 10.1080/15427951.2004.10129096]
    [80] Ozisik AP, Andresen G, Bissias G, Houmansadr A, Levine B. Graphene: A new protocol for block propagation using set reconciliation. In: Proc. of the 2017 Data Privacy Management, Cryptocurrencies and Blockchain Technology. Oslo: Springer, 2017. 420-428.
    [81] Klarman U, Basu S, Kuzmanovic A, Sirer EG. bloXroute: A scalable trustless blockchain distribution network. IEEE Internet of Things Journal, 2019, 12(11): 1-15.
    [82] Labs M. Design and analysis of a decentralized relay network. 2019. https://www.marlin.pro/whitepaper
    [83] Hyperledger blockchain performance metrics. White Paper, 2022. https://www.hyperledger.org/learn/publications/blockchain-performance-metrics#
    [84] Dinh TTA, Wang J, Chen G, Liu R, Ooi BC, Tan KL. BLOCKBENCH: A framework for analyzing private blockchains. In: Proc. of the 2017 ACM Int’l Conf. on Management of Data. Chicago: ACM, 2017. 1085-1100.
    [85] 张长贵, 张岩峰, 李晓华, 聂铁铮, 于戈. 区块链新技术综述: 图型区块链和分区型区块链. 计算机科学, 2020, 47(10): 282-289. [doi: 10.11896/jsjkx.191000057]
    Zhang CG, Zhang YF, Li XH, Nie TZ, Yu G. Survey of new blockchain techNiques: DAG based blockchain and sharding based blockchain. Computer Science, 2020, 47(10): 282-289 (in Chinese with English abstract). [doi: 10.11896/jsjkx.191000057]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

石晶,张奥,白晓颖,蔡华谦,刘譞哲.分布式账本系统性能优化技术综述.软件学报,2023,34(10):4607-4635

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-10
  • 最后修改日期:2021-10-24
  • 在线发布日期: 2022-05-24
  • 出版日期: 2023-10-06
文章二维码
您是第19892460位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号