基于条件对抗时空编码器的肺部肿瘤纵向预测方法
作者:
作者简介:

肖宁(1994-),男,博士生,主要研究领域为机器学习,医学图像处理.;肖小娇(1990-),女,博士,CCF专业会员,主要研究领域为机器学习,医学图像处理.;强彦(1969-),男,博士,教授,博士生导师,CCF杰出会员,主要研究领域为机器学习,云计算,图像大数据,人工智能.;李克勤(1965-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为云计算,雾计算,移动边缘计算,机器学习,智能计算.;李硕(1974-),男,博士,教授,主要研究领域为机器学习,医学图像处理,人工智能.;廉建红(1969-),男,主任医师,主要研究领域为胸腔镜食管癌,肺癌及纵膈肿瘤的手术治疗.

通讯作者:

强彦,Email:qiangyan@tyut.edu.cn

中图分类号:

TP391

基金项目:

国家自然科学基金(61872261); 山西省自然科学基金(201901D111319)


Longitudinal Prediction of Lung Tumor Based on Conditional Adversarial Spatiotemporal Encoder
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    肿瘤位置以及生长变化的观测是肿瘤治疗方案的制定中的重要环节. 基于医学图像的干预手段以一种非侵入方式, 能够直观地观察到患者体内肿瘤状态, 来预测肿瘤的生长情况, 从而帮助医师建立适应于患者特定的治疗方案. 提出了一种全新的深度网络模型——条件对抗时空编码器模型来预测肿瘤生长情况. 该模型主要分为3个部分, 肿瘤预测生成器, 相似度得分鉴别器以及由患者个人情况组成的条件. 肿瘤预测生成器会根据两个时期的肿瘤图像预测出下一个时期的肿瘤, 相似度得分鉴别器用来计算预测出的肿瘤与真实肿瘤之间的相似性, 另外, 使用了患者的个人情况作为条件加入到肿瘤生长预测过程中. 该模型在收集到的两个医学数据集上进行实验验证, 实验结果的召回率达到了76.10%, 精准率达到了91.70%, Dice系数达到了82.4%, 表明该模型可以精准地预测出下一个时期的肿瘤影像.

    Abstract:

    The observation of tumor location and growth is an important link in the formulation of tumor treatment plans. Intervention methods based on medical images can be employed to visually observe the status of the tumor in the patient in a non-invasive way, predict the growth of the tumor, and ultimately help physicians develop a treatment plan specific to the patient. This study proposes a new deep network model, namely the conditional adversarial spatiotemporal encoder model, to predict tumor growth. This model mainly consists of three parts: the tumor prediction generator, the similarity score discriminator, and conditions composed of the patient’s personal situations. The tumor prediction generator predicts the tumor in the next period according to the tumor images of two periods. The similarity score discriminator is used to calculate the similarity between the predicted tumor and the real one. In addition, this study adds the patient’s personal situations as conditions to the tumor growth prediction process. The proposed model is experimentally verified on two collected medical datasets. The experimental results achieve a recall rate of 76.10%, an accuracy rate of 91.70%, and a Dice coefficient of 82.4%, indicating that the proposed model can accurately predict the tumor images of the next period.

    参考文献
    [1] Torre LA, Siegel RL, Jemal A. Lung cancer statistics. Advances in Experimental Medicine and Biology, 2016, 893: 1-19. [doi: 10.1007/978-3-319-24223-1_1]
    [2] Cazoulat G, Owen D, Matuszak MM, Balter JM, Brock KK. Biomechanical deformable image registration of longitudinal lung CT images using vessel information. Physics in Medicine & Biology, 2016, 61(13): 4826-4839. [doi: 10.1088/0031-9155/61/13/4826]
    [3] Gandolfi A, De Franciscis S, D’Onofrio A, Fasano A, Sinisgalli C. Angiogenesis and vessel co-option in a mathematical model of diffusive tumor growth: The role of chemotaxis. Journal of Theoretical Biology, 2021, 512: 110526. [doi: 10.1016/j.jtbi.2020.110526]
    [4] Iranmanesh F, Nazari MA. Finite element modeling of avascular tumor growth using a stress-driven model. Journal of Biomechanical Engineering, 2017, 139(8): 081009. [doi: 10.1115/1.4037038]
    [5] Interian R, Rodríguez-Ramos R, Valdés-Ravelo F, Ramírez-Torres A, Ribeiro C, Conci A. Tumor growth modelling by cellular automata. Mathematics and Mechanics of Complex Systems, 2017, 5(3-4): 239-259. [doi: 10.2140/memocs.2017.5.239]
    [6] Roque T, Risser L, Kersemans V, Smart S, Allen D, Kinchesh P, Gilchrist S, Gomes AL, Schnabel JA, Chappell MA. A DCE-MRI driven 3-D reaction-diffusion model of solid tumor growth. IEEE Transactions on Medical Imaging, 2018, 37(3): 724-732. [doi: 10.1109/TMI.2017.2779811]
    [7] Kamli A, Saouli R, Batatia H, Naceur MB, Youkana I. Synthetic medical image generator for data augmentation and anonymisation based on generative adversarial network for glioblastoma tumors growth prediction. IET Image Processing, 2020, 14(16): 4248-4257. [doi: 10.1049/iet-ipr.2020.1141]
    [8] Pei LM, Bakas S, Vossough A, Reza SMS, Davatzikos C, Iftekharuddin KM. Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion. Biomedical Signal Processing and Control, 2020, 55: 101648. [doi: 10.1016/j.bspc.2019.101648]
    [9] Luján E, Rosito MS, Soba A, Suárez C. Libregrowth: A tumor growth code based on reaction-diffusion equations using shared memory. Computer Physics Communications, 2019, 243: 97-105. [doi: 10.1016/j.cpc.2019.05.005]
    [10] Zhang L, Lu L, Summers RM, Kebebew E, Yao JH. Convolutional invasion and expansion networks for tumor growth prediction. IEEE Transactions on Medical Imaging, 2018, 37(2): 638-648. [doi: 10.1109/TMI.2017.2774044]
    [11] Vaghi C, Rodallec A, Fanciullino R, Ciccolini J, Mochel JP, Mastri M, Poignard C, Ebos JML, Benzekry S. Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLoS Computational Biology, 2020, 16(2): e1007178. [doi: 10.1371/journal.pcbi.1007178]
    [12] Ghita M, Chandrashekar V, Copot D, Billiet C, Verellen D, Ionescu CM. Lung tumor growth modeling in patients with NSCLC undergoing radiotherapy. IFAC-PapersOnLine, 2021, 54(15): 233-238. [doi: 10.1016/j.ifacol.2021.10.261]
    [13] Yoon HJ, Park H, Lee HY, Sohn I, Ahn J, Lee SH. Prediction of tumor doubling time of lung adenocarcinoma using radiomic margin characteristics. Thoracic Cancer, 2020, 11(9): 2600-2609. [doi: 10.1111/1759-7714.13580]
    [14] Liu YX, Sadowski SM, Weisbrod AB, Kebebew E, Summers RM, Yao JH. Patient specific tumor growth prediction using multimodal images. Medical Image Analysis, 2014, 18(3): 555-566. [doi: 10.1016/j.media.2014.02.005]
    [15] Elazab A, Wang CM, Gardezi SJS, Bai HM, Hu QM, Wang TF, Chang CQ, Lei BY. GP-GAN: Brain tumor growth prediction using stacked 3D generative adversarial networks from longitudinal MR Images. Neural Networks, 2020, 132: 321-332. [doi: 10.1016/j.neunet.2020.09.004]
    [16] Xiao N, Qiang Y, Zhao ZJ, Zhao JJ, Lian JH. Tumour growth prediction of follow-up lung cancer via conditional recurrent variational autoencoder. IET Image Processing, 2020, 14(15): 3975-3981. [doi: 10.1049/iet-ipr.2020.0496]
    [17] Zhang L, Lu L, Summers RM, Kebebew E, Yao JH. Personalized pancreatic tumor growth prediction via group learning. In: Proc. of the 20th Int’l Conf. on Medical Image Computing and Computer-assisted Intervention. Quebec City: Springer, 2017. 424-432.
    [18] Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Advances in Neural Information Processing Systems, 2014, 3: 2672-2680. (查阅所有网上资料, 未找到本条文献信息, 请联系作者确认)
    [19] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. In: Proc. of the 4th Int’l Conf. on Learning Representations. San Juan: ICLR, 2016.
    [20] Antipov G, Baccouche M, Dugelay JL. Face aging with conditional generative adversarial networks. In: Proc. of the 2017 IEEE Int’l Conf. on Image Processing (ICIP). Beijing: IEEE, 2017. 2089-2093.
    [21] 张莉, 李彬, 田联房, 张鸣生, 王雷, 李祥霞, 刘霜纯. 基于Log-Euclidean协方差矩阵描述符的医学图像配准. 计算机学报, 2019, 42(9): 2087-2099. [doi: 10.11897/SP.J.1016.2019.02087]
    Zhang L, Li B, Tian LF, Zhang MS, Wang L, Li XX, Liu SC. Medical image registration based on log-euclidean covariance matrices descriptor. Chinese Journal of Computers, 2019, 42(9): 2087-2099 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2019.02087]
    [22] Dosovitskiy A, Fischer P, Ilg E, Häusser P, Hazirbas C, Golkov V, Van Der Smagt P, Cremers D, Brox T. FlowNet: Learning optical flow with convolutional networks. In: Proc. of the 2015 IEEE Int’l Conf. on Computer Vision. Santiago: IEEE, 2015. 2758-2766.
    [23] Ilg E, Mayer N, Saikia T, Keuper M, Dosovitskiy A, Brox T. FlowNet 2.0: Evolution of optical flow estimation with deep networks. In: Proc. of the 2017 IEEE Conf. on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 1647-1655.
    [24] Wang L, Shen LP. A ConvLSTM-combined hierarchical attention network for saliency detection. In: Proc. of the 2020 IEEE Int’l Conf. on Image Processing (ICIP). Abu Dhabi: IEEE, 2020. 1996-2000.
    [25] Howard DH, Richards TB, Bach PB, Kegler MC, Berg CJ. Comorbidities, smoking status, and life expectancy among individuals eligible for lung cancer screening. Cancer, 2015, 121(24): 4341-4347. [doi: 10.1002/cncr.29677]
    [26] 冯浩洁, 姚颐, 耿庆. 美国国家综合癌症网络临床实践指南: 非小细胞肺癌(2021V1)更新解读. 临床外科杂志, 2021, 29(1): 25-28. [doi: 10.3969/j.issn.1005-6483.2021.01.009]
    Feng HH, Yao Y, Geng Q. National comprehensive cancer network clinical practice guidelines: Non-small cell lung cancer (2021v1) updates interpretation. Journal of Clinical Surgery, 2021, 29(1): 25-28 (in Chinese with English abstract). [doi: 10.3969/j.issn.1005-6483.2021.01.009]
    [27] 霍其润, 李建武, 陆耀, 秦明. 基于变分的CT图像环形伪影校正. 自动化学报, 2019, 45(9): 1713-1726. [doi: 10.16383/j.aas.c180258]
    Huo QR, Li JW, Lu Y, Qin M. Variation-based ring artifact correction in CT images. Acta Automatica Sinica, 2019, 45(9): 1713-1726 (in Chinese with English abstract). [doi: 10.16383/j.aas.c180258]
    [28] Aberle DR, DeMello S, Berg CD, Black WC, Brewer B, Church TR, Clingan KL, Duan FH, Fagerstrom RM, Gareen IF, Gatsonis CA, Gierada DS, Jain A, Jones GC, Mahon I, Marcus PM, Rathmell JM, Sicks J. Results of the two incidence screenings in the national lung screening trial. The New England Journal of Medicine, 2013, 369(10): 920-931. [doi: 10.1056/NEJMoa1208962]
    [29] National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. The New England Journal of Medicine, 2011, 365(5): 395-409. [doi: 10.1056/NEJMoa1102873]
    [30] Kingma DP, Ba LJ. Adam: A method for stochastic optimization. In: Proc. of the 3rd Int’l Conf. on Learning Representations. San Diego: ICLR, 2015.
    [31] Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Proc. of the 31st Int’l Conf. on Neural Information Processing Systems. Long Beach: ACM, 2017. 6629-6640.
    [32] Zhang L, Lu L, Wang XS, Zhu RM, Bagheri M, Summers RM, Yao JH. Spatio-temporal convolutional LSTMs for tumor growth prediction by learning 4D longitudinal patient data. IEEE Transactions on Medical Imaging, 2020, 39(4): 1114-1126. [doi: 10.1109/TMI.2019.2943841]
    [33] Yao JW, Shi Y, Cao K, Lu L, Lu JP, Song QK, Jin G, Xiao J, Hou Y, Zhang L. DeepPrognosis: Preoperative prediction of pancreatic cancer survival and surgical margin via comprehensive understanding of dynamic contrast-enhanced CT imaging and tumor-vascular contact parsing. Medical Image Analysis, 2021, 73: 102150. [doi: 10.1016/j.media.2021.102150]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

肖宁,肖小娇,强彦,李克勤,李硕,廉建红.基于条件对抗时空编码器的肺部肿瘤纵向预测方法.软件学报,2023,34(9):4392-4406

复制
分享
文章指标
  • 点击次数:599
  • 下载次数: 2545
  • HTML阅读次数: 1250
  • 引用次数: 0
历史
  • 收稿日期:2021-08-31
  • 最后修改日期:2021-11-03
  • 在线发布日期: 2022-12-08
  • 出版日期: 2023-09-06
文章二维码
您是第19750479位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号