基于自监督知识的无监督新集域适应学习
作者:
作者简介:

汪云云(1986-),女,博士,副教授,CCF专业会员,主要研究领域为迁移学习,机器学习,神经计算;
赵国祥(2000-),男,主要研究领域为迁移学习,机器学习,神经计算;
薛晖(1979-),女,博士,教授,博士生导师,CCF专业会员,主要研究领域为模式识别,机器学习,神经计算.

通讯作者:

汪云云,E-mail:wangyunyun@njupt.edu.cn

基金项目:

国家自然科学基金(61876091,61772284,62006126);中国博士后科学基金(2019M651918);工信部模式分析与机器智能重点实验室开放基金;江苏省高等学校自然科学研究面上项目(0KJB520004)


Unsupervised New-set Domain Adaptation with Self-supervised Knowledge
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    无监督域适应(unsupervised domain adaptation,UDA)旨在利用带大量标注数据的源域帮助无任何标注信息的目标域学习.在UDA中,通常假设源域和目标域间的数据分布不同,但共享相同的类标签空间.但在真实开放学习场景中,域间的标签空间很可能存在差异.在极端情形下,域间的类别不存在交集,即目标域中类别都为新未知类别.此时若直接迁移源域的类判别知识,可能会损害目标域性能,导致负迁移问题.为此,提出了基于自监督知识的无监督新集域适应(unsupervised new-set domain adaptation with self-supervised knowledge,SUNDA)方法,迁移源域的样本对比知识;同时,利用目标域的自监督知识指导知识迁移.首先,通过自监督学习源域和目标域初始特征,并固定部分网络参数用于保存目标域信息.再将源域的样本对比知识迁移至目标域,辅助目标域学习类判别特征.此外,利用基于图的自监督分类损失,解决域间无共享类别时目标域的分类问题.在手写体数字的无共享类别跨域迁移和人脸数据的无共享类别跨种族迁移任务上对SUNDA进行评估,实验结果表明,SUNDA的学习性能优于无监督域适应、无监督聚类以及新类别发现方法.

    Abstract:

    Unsupervised domain adaptation (UDA) adopts source domain with large amounts of labeled data to help the learning of the target domain without any label information. In UDA, the source and target domains usually have different data distribution, but share the same label space. But in real open scenarios, label spaces between domains can also be different. In extreme cases, there is no shared class between domains, i.e., all classes in target domain are new classes. In this case, directly transferring the discriminant knowledge in source domain would harm the performance of target domain, lead to negative transfer. As a result, this study proposes an unsupervised new-set domain adaptation with self-supervised knowledge (SUNDA). Firstly, self-supervised learning is adopted to learn the initial features on source and target domains, with the first few layers frozen, in order to keep the target information. Then, the class contrastive knowledge from the source domain is transferred, to help learning discriminant features for target domain. Moreover, the graph-based self-supervised classification loss is adopted to handle the classification problem in target domain without common labels. Experiments are conducted over both digit and face recognition tasks without shared classes, and the empirical results show the competitive of SUNDA compared with UDA and unsupervised clustering methods, as well as new category discovery method.

    参考文献
    [1] Zhuang F, Qi Z, Duan K, et al. A comprehensive survey on transfer learning. Proc. of the IEEE, 2020, 109(1): 43-76.
    [2] Wilson G, Cook DJ. A survey of unsupervised deep domain adaptation. ACM Trans. on Intelligent Systems and Technology (TIST), 2020, 11(5): 1-46.
    [3] Wang W, Zheng VW, Yu H, et al. A survey of zero-shot learning: Settings, methods, and applications. ACM Trans. on Intelligent Systems and Technology (TIST), 2019, 10(2): 1-37.
    [4] Pang N, Zhao X, Wang W, et al. Few-shot text classification by leveraging bi-directional attention and cross-class knowledge. Sciece China Information Sciences, 2021, 64(3): 29-41.
    [5] Han K, Vedaldi A, Zisserman A. Learning to discover novel visual categories via deep transfer clustering. In: Proc. of the IEEE/ CVF Int’l Conf. on Computer Vision. 2019. 8401-8409.
    [6] Long M, Cao Y, Wang J, et al. Learning transferable features with deep adaptation networks. In: Proc. of the Int’l Conf. on Machine Learning. PMLR, 2015. 97-105.
    [7] Kullback S, Leibler RA. On information and sufficiency. Annals of Mathematical Statistics, 1951, 22(1): 79-86.
    [8] Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. In: Proc. of the Int’l Conf. on Machine Learning. PMLR, 2017. 214-223.
    [9] Ganin Y, Ustinova E, Ajakan H, et al. Domain-adversarial training of neural networks. Journal of Machine Learning Research, 2016, 17(59): 1-35.
    [10] Wang YY, Gu JM, Wang C, et al. Discrimination-aware domain adversarial neural network. Journal of Computer Science and Technology, 2020, 35: 259-267.
    [11] Saito K, Watanabe K, Ushiku Y, etal. Maximum classifier discrepancy for unsupervised domain adaptation. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 3723-3732.
    [12] Zhu JY, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2017. 2223-2232.
    [13] Hoffman J, Tzeng E, Park T, etal. Cycada: Cycle-consistent adversarial domain adaptation. In: Proc. of the Int’l Conf. on Machine Learning. PMLR, 2018. 1989-1998.
    [14] Cao Z, Long M, Wang J, et al. Partial transfer learning with selective adversarial networks. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 2724-2732.
    [15] Zhang J, Ding Z, Li W, et al. Importance weighted adversarial nets for partial domain adaptation. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 8156-8164.
    [16] Cao Z, You K, Long M, et al. Learning to transfer examples for partial domain adaptation. In: Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition. 2019. 2985-2994.
    [17] Panareda Busto P, Gall J. Open set domain adaptation. In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2017. 754-763.
    [18] Liu H, Cao Z, Long M, et al. Separate to adapt: Open set domain adaptation via progressive separation. In: Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition. 2019. 2927-2936.
    [19] Saito K, Yamamoto S, Ushiku Y, etal. Open set domain adaptation by backpropagation. In: Proc. of the European Conf. on Computer Vision (ECCV). 2018. 153-168.
    [20] Jo I, Kim J, Kang H, et al. Open set recognition by regularising classifier with fake data generated by generative adversarial networks. In: Proc. of the 2018 IEEE Int’l Conf. on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018. 2686-2690.
    [21] You K, Long M, Cao Z, et al. Universal domain adaptation. In: Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition. 2019. 2720-2729.
    [22] Saito K, Kim D, Sclaroff S, etal. Universal domain adaptation through self supervision. arXiv: 2002.07953, 2020.
    [23] Zhang R, Isola P, Efros AA. Colorful image colorization. In: Proc. of the European Conf. on Computer Vision. Cham: Springer, 2016. 649-666.
    [24] Doersch C, Gupta A, Efros AA. Unsupervised visual representation learning by context prediction. In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2015. 1422-1430.
    [25] Noroozi M, Favaro P. Unsupervised learning of visual representations by solving jigsaw puzzles. In: Proc. of the European Conf. on Computer Vision. Cham: Springer, 2016. 69-84.
    [26] Gidaris S, Singh P, Komodakis N. Unsupervised representation learning by predicting image rotations. arXiv: 1803.07728, 2018.
    [27] He K, Fan H, Wu Y, et al. Momentum contrast for unsupervised visual representation learning. In: Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition. 2020. 9729-9738.
    [28] Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations. In: Proc. of the Int’l Conf. on Machine Learning. PMLR, 2020. 1597-1607.
    [29] Sohn K. Improved deep metric learning with multi-class n-pair loss objective. In: Proc. of the 30th Int’l Conf. on Neural Information Processing Systems. 2016. 1857-1865.
    [30] Li YF, Liang DM. Safe semi-supervised learning: A brief introduction. Frontiers of Computer Science, 2019, 13(4): 669-676.
    [31] Feng J, Wang X, Liu W. Deep graph cut network for weakly-supervised semantic segmentation. Science China Information Sciences, 2021, 64(3): 130105.
    [32] Oliver A, Odena A, Raffel C, et al. Realistic evaluation of deep semi-supervised learning algorithms. arXiv: 1804.09170, 2018.
    [33] Laine S, Aila T. Temporal ensembling for semi-supervised learning. arXiv: 1610.02242, 2016.
    [34] Kuhn HW. The Hungarian method for the assignment problem. Naval Research Logistics, 2010, 52(1-2): 7-21.
    [35] Shah SA, Koltun V. Deep continuous clustering. arXiv: 1803.01449, 2018.
    [36] Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis. In: Proc. of the Int’l Conf. on Machine Learning. 2016.
    [37] Yang J, Parikh D, Batra D. Joint unsupervised learning of deep representations and image clusters. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2016. 5147-5156.
    [38] Guo Y, Zhang L, Hu Y, et al. Ms-celeb-1m: Challenge of recognizing one million celebrities in the real world. Electronic Imaging, 2016, 2016(11): 1-6.
    [39] Sohn K, Liu S, Zhong G, etal. Unsupervised domain adaptation for face recognition in unlabeled videos. In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2017. 3210-3218.
    [40] Chang JL, Wang LF, Meng GF, Xiang SM, Pan CH. Deep adaptive image clustering. In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2017. 5879-5887.
    [41] Ehrhardt S, Zisserman A, Rebuffi SA, et al. Automatically discovering and learning new visual categories with ranking statistics. In: Proc. of the 8th Int’l Conf. on Learning Representations (ICLR). 2020.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪云云,孙顾威,赵国祥,薛晖.基于自监督知识的无监督新集域适应学习.软件学报,2022,33(4):1170-1182

复制
分享
文章指标
  • 点击次数:2277
  • 下载次数: 5601
  • HTML阅读次数: 5003
  • 引用次数: 0
历史
  • 收稿日期:2021-05-31
  • 最后修改日期:2021-07-16
  • 在线发布日期: 2021-10-26
  • 出版日期: 2022-04-06
文章二维码
您是第19728008位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号