CMvSC: 知识迁移下的深度一致性多视图谱聚类网络
作者:
作者简介:

张熠玲(1994-),女,博士生,主要研究领域为多视图学习,多任务学习,时空数据挖掘;
欧阳小草(1994-),女,博士生,CCF学生会员,主要研究领域为深度学习,时空数据挖掘;
杨燕(1964-),女,博士,教授,博士生导师,CCF杰出会员,主要研究领域为人工智能,大数据分析与挖掘,集成学习,多视图学习,聚类分析,时空挖掘;
胡节(1978-),女,博士,副教授,CCF专业会员,主要研究领域为人工智能,机器学习,数据挖掘,聚类分析,聚类集成;
周威(1994-),男,博士生,主要研究领域为深度学习,时空数据挖掘,多视图学习.

通讯作者:

杨燕,E-mail:yyang@swjtu.edu.cn

基金项目:

国家自然科学基金(61976247)


CMvSC: Knowledge Transferring Based Deep Consensus Network for Multi-view Spectral Clustering
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    谱聚类是聚类分析中极具代表性的方法之一,由于其对数据结构没有太多假设要求,受到了研究者们的广泛关注.但传统的谱聚类算法通常受到谱嵌入的可扩展性和泛化性的限制,即:无法应对大规模设置和复杂数据分布.为克服以上缺陷,旨在引入深度学习框架提升谱聚类的泛化能力与可扩展能力,同时,结合多视图学习挖掘数据样本的多样性特征,从而提出一种知识迁移下的深度一致性多视图谱聚类网络(CMvSC).首先,考虑到单个视图的局部不变性,CMvSC采用局部学习层独立学习每个视图的特有嵌入;其次,由于多视图具有全局一致性,CMvSC引入全局学习层进行参数共享与特征迁移,学习多视图间的共享嵌入;同时,考虑到邻接矩阵对谱聚类性能的重要影响,CMvSC通过训练孪生网络和设计对比损失来学习成对数据间的近邻关系,以替代传统谱聚类算法中的距离度量;最后,4个数据集上的实验结果证明了CMvSC对多视图谱聚类任务的有效性.

    Abstract:

    Spectral clustering, which is one of the most representative methods in clustering analysis, receives much attention from scholars, because it does not constrain the data structure of the original samples. However, traditional spectral clustering algorithm usually contains two major limitations, i.e., it is unable to cope with the large-scale settings and complex data distribution. To overcome the above shortcomings, this study introduces a deep learning framework to improve the generalization and scalability of spectral clustering, and combines the multi-view learning to mine diverse features among data samples, finally proposes a knowledge transferring based deep consensus network for multi-view spectral clustering (CMvSC). First, considering the local invariance of single view, CMvSC adopts the local learning layer to learn the specific embedding of each view individually. Then, because of the global consistency among multiple views, CMvSC introduces the global learning layer to achieve parameter sharing and feature transferring, and learns the shared embedding in different views. Meanwhile, taking the effect of affinity matrix for spectral clustering into consideration, CMvSC learns the affinity correlation between the paired samples by training the Siamese network and designing the contrastive loss, which replaces the distance metric in traditional spectral clustering. Finally, the experimental results on four datasets demonstrate the effectiveness of the proposed CMvSC for multi-view clustering.

    参考文献
    [1] Kang Z, Zhao XJ, Peng C, et al. Partition level multiview subspace clustering. Neural Networks, 2020: 279-288.
    [2] Yang Y, Wang H. Multi-view clustering: A survey. Bia Data Mining and Analytics, 2018, 1(2): 83-107
    [3] Zhang YP, Zhou J, Deng ZH, et al. Multi-view fuzzy clustering approach based on medoid invariant constraint. Ruan Jian Xue Bao/Journal of Software, 2019, 30(2): 282-301 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5625.htm[doi: 10.13328/j.cnki.jos.005625]
    [4] Bickel S, Scheffer T. Multi-view clustering. In: Proc. of the 4th IEEE Int’l Conf. on Data Mining. 2004. 19-26.
    [5] Xie JY, Ding LJ, Wang MZ. Spectral clustering based unsupervised feature selection algorithms. Ruan Jian Xue Bao/Journal of Software, 2020, 57(9): 1928-1938 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5927.htm [doi: 10.13328/j. cnki.jos.005927]
    [6] Huang ZY, Zhou TJ, Peng X, et al. Multi-view spectral clustering network. In: Proc. of of the 28th Int’l Joint Conf. on Artificial Intelligence. 2019. 2563-2569.
    [7] Shaham U, Stanton K, Li H, et al. SpectralNet: Spectral clustering using deep neural networks. In: Proc. of the 6th Int’l Conf. on Learning Representations. arXiv: 1801.01587, 2018.
    [8] Appice A, Malerba D. A co-training strategy for multiple view clustering in process mining. IEEE Trans. on Services Computing, 2016, 9(6): 832-845.
    [9] Du L, Zhou P, Shi L, et al. Robust multiple kernel k-means using l2,1-norm. In: Proc. of the 24th Int’l Joint Conf. on Artificial Intelligence. 2015. 3476-3482.
    [10] Lu YT, Wang LT, Lu JF, et al. Multiple kernel clustering based on centered kernel alignment. Pattern Recognition, 2014, 47(11): 3656-3664.
    [11] Luo SR, Zhang CQ, Zhang W, et al. Consistent and specific multi-view subspace clustering. In: Proc. of the AAAI Conf. on Artificial Intelligence. 2018. 3730-3737.
    [12] Liu GC, Lin ZC, Yan SC, et al. Robust recovery of subspace structures by low-rank representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184.
    [13] Hou CP, Nie FP, Tao H, et al. Multi-view unsupervised feature selection with adaptive similarity and view weight. IEEE Trans. on Knowledge and Data Engineering, 2017, 29(9): 1998-2011.
    [14] Wang H, Yang Y, Liu B. GMC: Graph-based multi-view clustering. IEEE Trans. on Knowledge and Data Engineering, 2019, 32(6): 1116-1129.
    [15] Cao XC, Zhang CQ, Fu HZ, et al. Diversity-induced multi-view subspace clustering. In: Proc. of the 2015 IEEE Conf. on Computer Vision and Pattern Recognition. 2015. 586-594.
    [16] Zhang CQ, Hu QH, Fu HZ, et al. Latent multi-view subspace clustering. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 4279-4287.
    [17] Kumar A, Daumé H. A co-training approach for multi-view spectral clustering. In: Proc. of the 28th Int’l Conf. on Machine Learning. 2011. 393-400.
    [18] Kumar A, Rai P, Daumé H. Co-regularized multi-view spectral clustering. In: Proc. of the 24th Int’l Conf. on Neural Information Processing Systems. 2011. 1413-1421.
    [19] Zhou DY, Burges CJ. Spectral clustering and transductive learning with multiple views. In: Proc. of the 24th Int’l Conf. on Machine Learning. 2007. 1159-1166.
    [20] Nie FP, Wang XQ, Huang H. Clustering and projected clustering with adaptive neighbors. In: Proc. of the 20th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 2014. 977-986.
    [21] Nie FP, Li J, Li XL. Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi- supervised classification. In: Proc. the 25th Int’l Joint Conf. on Artificial Intelligence. 2016. 1881-1887.
    [22] Nie FP, Cai GH, Li XL. Multi-view clustering and semi-supervised classification with adaptive neighbours. In: Proc. of the 31st AAAI Conf. on Artificial Intelligence. 2017. 2408-2414.
    [23] Kang Z, Shi GX, Huang SD, et al. Multi-graph fusion for multi-view spectral clustering. Knowledge-Based Systems, 2020, 189: 105102.
    [24] Nie FP, Li J, Li XL. Self-weighted multiview clustering with multiple graphs. In: Proc. of of the 26th Int’l Joint Conf. on Artificial Intelligence. 2017. 2564-2570.
    [25] Zhang Z, Liu L, Shen FM, et al. Binary multi-view clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2019, 41(7): 1774-1782.
    [26] Li XL, Zhang R, Wang Q, et al. Autoencoder constrained clustering with adaptive neighbors. IEEE Trans. on Neural Networks and Learning Systems, 2021, 32(1): 443-449.
    [27] Xie JY, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis. In: Proc. of the 33rd Int’l Conf. on Machine Learning, Vol.48. 2016. 478-487.
    [28] Yang JW, Parikh D, Batra D. Joint unsupervised learning of deep representations and image clusters. In: Proc. of the 2016 IEEE Conf. on Computer Vision and Pattern Recognition. 2016. 1063-6919.
    [29] Caron M, Bojanowski P, Joulin A, et al. Deep clustering for unsupervised learning of visual features. In: Proc. of the European Conf. on Computer Vision. 2018. 132-149.
    [30] Andrew G, Arora R, Bilmes J, et al. Deep canonical correlation analysis. In: Proc. of the 30th Int’l Conf. on Machine Learning. 2013. 1247-1255.
    [31] Wang WR, Arora R, Livescu K, et al. On deep multi-view representation learning: Objectives and optimization. In: Proc. of the 32rd Int’l Conf. on Machine Learning. 2015. 1083-1092.
    [32] Zhao HD, Ding ZM, Fu Y. Multi-view clustering via deep matrix factorization. In: Proc. of the 31st AAAI Conf. on Artificial Intelligence. 2017. 2921-2927.
    [33] Yang B, Fu X, Sidiropoulos ND, et al. Towards k-means-friendly spaces: Simultaneous deep learning and clustering. In: Proc. of the 34th Int’l Conf. on Machine Learning. 2017. 3861-3870.
    [34] Xie JY, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis. In: Proc. of the 33rd Int’l Conf. on Machine Learning. 2016. 478-487.
    [35] Jiang ZX, Zheng Y, Tan HC, et al. Variational deep embedding: An unsupervised and generative approach to clustering. In: Proc. of the 26th Int’l Joint Conf. on Artificial Intelligence. 2017. 1965-1972.
    [36] Ng A, Jordan M, Weiss Y. On spectral clustering: Analysis and an algorithm. In: Proc. of the 15th Int’l Conf. on Neural Information Processing Systems. 2002. 849-856.
    附中文参考文献:
    [3] 张远鹏, 周洁, 邓赵红, 等. 代表点一致性约束的多视角模糊聚类算法. 软件学报, 2019, 30(2): 282-301. http://www.jos.org.cn/1000-9825/5625.htm [doi: 10.13328/j.cnki.jos.005625]
    [5] 谢娟英, 丁丽娟, 王明钊. 基于谱聚类的无监督特征选择算法. 软件学报, 2020, 31(4): 1009-1024. http://www.jos.org.cn/1000-9825/5927.htm [doi: 10.13328/j.cnki.jos.005927]
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张熠玲,杨燕,周威,欧阳小草,胡节. CMvSC: 知识迁移下的深度一致性多视图谱聚类网络.软件学报,2022,33(4):1373-1389

复制
分享
文章指标
  • 点击次数:1274
  • 下载次数: 4847
  • HTML阅读次数: 3209
  • 引用次数: 0
历史
  • 收稿日期:2021-05-29
  • 最后修改日期:2021-07-16
  • 在线发布日期: 2021-10-26
  • 出版日期: 2022-04-06
文章二维码
您是第19727615位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号