伪标签不确定性估计的源域无关鲁棒域自适应
作者:
作者简介:

王帆(1999-),女,硕士生,主要研究领域为机器学习,域自适应,源域无关域自适应;
尹义龙(1972-),男,教授,博士生导师,CCF杰出会员,主要研究领域为机器学习,数据挖掘;
韩忠义(1994-),男,博士生,主要研究领域为机器学习,数据挖掘.

通讯作者:

韩忠义,E-mail:hanzhongyicn@gmail.com;尹义龙,E-mail:ylyin@sdu.edu.cn

基金项目:

国家自然科学基金(62176139)


Source Free Robust Domain Adaptation Based on Pseudo Label Uncertainty Estimation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    无监督域自适应是解决训练集(源域)和测试集(目标域)分布不一致的有效途径之一.现有的无监督域自适应的理论和方法在相对封闭、静态的环境下取得了一定成功,但面向开放动态任务环境时,在隐私保护、数据孤岛等限制条件下,源域数据往往不可直接获取,现有无监督域自适应方法的鲁棒性将面临严峻的挑战.鉴于此,研究了一个更具挑战性却又未被充分探索的问题:源域无关的无监督域自适应,目标是仅依据预训练的源域模型和无标签目标域数据,实现源域向目标域的正向迁移.提出一种基于伪标签不确定性估计的源域无关鲁棒域自适应的方法PLUE-SFRDA (pseudo label uncertainty estimation for source free robust domain adaptation).PLUE-SFRDA的核心思想是:根据源域模型的预测结果,联合信息熵和能量函数充分挖掘目标域数据的隐含信息,探索类原型和类锚点,以准确估计目标域数据的伪标签,进而调优域自适应模型,实现源域数据无关的鲁棒域自适应.PLUE-SFRDA包含提出的二元软约束信息熵,解决了标准信息熵不能有效估计处于决策边界样本的不确定性的问题,增强了所挖掘的类原型和类锚点的可信度,进而提高了目标域伪标签估计的准确率.PLUE-SFRDA包含了提出的加权对比过滤方法,通过比较每个样本距离该类的类锚点和其他类的类锚点的加权距离,过滤掉处于决策边界的类别信息模糊样本,进一步提高了伪标签不确定性估计的安全性.PLUE-SFDRA还包含一个信息最大化损失,实现源域分类器和伪标签估计器迭代优化,逐渐将源域模型中蕴含的源域知识迁移至目标域,进一步提高了伪标签不确定性估计的鲁棒性.在Office-31,Office-Home和VisDA-C这3个公开的基准数据集上的大量实验表明:PLUE-SFRDA不仅超过了最新的源域无关的域自适应方法的表现,还显著优于现有的依赖源域数据的域自适应方法.

    Abstract:

    Unsupervised domain adaptation is one of the effective ways to solve the inconsistent distribution of training set (source domain) and test set (target domain). Existing unsupervised domain adaptation theories and methods have achieved some success in relatively closed and static environments. However, for open dynamic task environments, the robustness of existing unsupervised domain adaptation methods will face serious challenges under the constraints of privacy protection and data silos, where source domain data are often not directly accessible. In view of this, this paper investigates a more challenging yet under-explored problem: source free unsupervised domain adaptation, with the goal of achieving positive transfer from the source domain to the target domain based only on the pre-trained source domain model and unlabeled target domain data. In this paper, we propose a method called PLUE-SFRDA (pseudo label uncertainty estimation for source free robust domain adaptation). The core idea of PLUE-SFRDA is to combine information entropy and energy function to fully explore the implicit information of the target domain data based on the prediction results of the source domain model, explore the class prototypes and class anchors to accurately estimate the pseudo label of the target domain data, and then tune the domain adaptation model to achieve the source free robust domain adaptation. PLUE-SFRDA contains a proposed binary soft constraint information entropy, which solves the problem that the standard information entropy cannot effectively estimate the pseudo label uncertainty of samples at the decision boundary, enhances the confidence of the mined class prototypes, and thus improves the accuracy of pseudo label estimation in the target domain. PLUE-SFRDA contains a weighted comparison filtering method proposed by this paper. By comparing the weighted distances of each sample to the class anchors of other classes, the fuzzy samples of class information at the decision boundary are filtered out, which further improves the security of the new pseudo label uncertainty estimation. PLUE-SFRDA also contains an information maximization loss to achieve iterative optimization of the source domain classifier and the pseudo label estimator, which gradually migrates the source domain knowledge embedded in the source domain model to the target domain, further improving the robustness of the pseudo label uncertainty estimation. Extensive experiments on three publicly available datasets, Office-31, Office-Home and VisDA-C, show that PLUE-SFRDA not only outperforms the state-of-the-art source-free domain adaptation methods but also significantly outperforms standard domain adaptation methods which depend on the source-domain data.

    参考文献
    [1] Liu JW, Sun ZK, Luo XL. Review and research development on domain adaptation learning. Acta Automatica Sinica, 2014, 40(8): 1576-1600 (in Chinese with English abstract). [doi: 10.3724/SP.J.1004.2014.01576]
    [2] Fan CN, Li P, Xiao T, et al. A review of deep domain adaptation: General situation and complex situation. Acta Automatica Sinica, 2021, 47(3): 515-548 (in Chinese with English abstract).[doi: 10.16383/j.aas.c200238]
    [3] Inoue N, Furuta R, Yamasaki T, et al. Cross-Domain weakly-supervised object detection through progressive domain adaptation. In: Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 2018. 5001-5009.
    [4] Hsu H, Yao C, Tsai Y, et al. Progressive domain adaptation for object detection. In: Proc. of the IEEE Winter Conf. on Applications of Computer Vision (WACV). 2020. 738-746.
    [5] Gopalan R, Li R, Chellappa R. Domain adaptation for object recognition: An unsupervised approach. In: Proc. of the IEEE Int’l Conf. on Computer Vision (ICCV 2011). 2011. 999-1006.
    [6] Tsai Y, Hung W, Schulter S, et al. Learning to adapt structured output space for semantic segmentation. In: Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 2018. 7472-7481.
    [7] Ben-David S, Blitzer J, Crammer K, et al. Analysis of representations for domain adaptation. In: Proc. of the 19th Int’l Conf. on Neural Information Processing Systems. 2006. 137-144.
    [8] Ben-David S, Blitzer J, Crammer K, et al. A theory of learning from different domains. 2010, 79: 151-175.
    [9] Ben-David S, Lu T, Luu T, et al. Impossibility theorems for domain adaptation. In: Proc. of the 13th Int’l Conf. on Artificial Intelligence and Statistics, Vol.9. Chia Laguna Resort, 2010. 129-136.
    [10] Zhang K, Schölkopf B, Muandet K, et al. Domain adaptation under target and conditional shift. In: Proc. of the 30th Int’l Conf. on Machine Learning, Vol.28. 2013. III-819-III-827.
    [11] Germain P, Habrard A, Laviolette F, et al. A PAC-Bayessian approach for domain adaptation with specialization to linear classifiers. In: Proc. of the 30th Int’l Conf. on Machine Learning, Vol.28. 2013. 738-746.
    [12] Sugiyama M, Suzuki T, Nakajima S, et al. Direct importance estimation for covariate shift adaptation. Annals of The Insitute of Statistical Mathematics, 2008, 60(4): 699-746.
    [13] Long M, Zhu H, Wang J, et al. Deep transfer learning with joint adaptation networks. In: Proc. of the 34th Int’l Conf. on Machine Learning (ICML 2017). 2017. 2208-2217.
    [14] Long M, Cao Y, Wang J, et al. Learning transferable features with deep adaptation networks. In: Proc. of the 32nd Int’l Conf. on Machine Learning (ICML 2015). 2015. 97-105.
    [15] Saito K, Ushiku Y, Harada T. Asymmetric tri-training for unsupervised domain adaptation. In: Proc. of the 34th Int’l Conf. on Machine Learning (ICML), Vol.70. 2017. 2988-2997.
    [16] Ganin Y, Lempitsky V. Unsupervised domain adaptation by backpropagation. In: Proc. of the 32nd Int’l Conf. on Machine Learning, Vol.37. 2015. 1180-1189.
    [17] Kairouz P, McMahan HB, Avent B, et al. Advances and open problems in federated learning. arXiv: 1912.04977, 2019.
    [18] Arpit D, Jastrzębski S, Ballas N, et al. A closer look at memorization in deep networks. In: Proc. of the 34th Int’l Conf. on Machine Learning (ICML 2017). 2017. 233-242.
    [19] Huang J, Smola AJ, Gretton A, et al. Correcting sample selection bias by unlabeled data. In: Proc. of the 19th Int’l Conf. on Neural Information Processing Systems. 2006. 601-608.
    [20] Zhang W, Ouyang W, Li W, et al. Collaborative and adversarial network for unsupervised domain adaptation. In: Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 2018. 3801-3809.
    [21] Han L, Zou Y, Gao R, et al. Unsupervised domain adaptation via calibrating uncertainties. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPR Workshops 2019). 2019. 99-102.
    [22] Saito K, Watanabe K, Ushiku Y, et al. Maximum classifier discrepancy for unsupervised domain adaptation. In: Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 2018. 3723-3732.
    [23] Long M, Cao Z, Wang J, et al. Conditional adversarial domain adaptation. In: Proc. of the Advances in Neural Information Processing Systems 31: Annual Conf. on Neural Information Processing Systems (NeurIPS). 2018. 1647-1657.
    [24] Nelakurthi AR, Maciejewski R, He J. Source free domain adaptation using an off-the-shelf classifier. In: Proc. of the IEEE Int’l Conf. on Big Data (Big Data). 2018. 140-145.
    [25] Liang J, He R, Sun Z, et al. Distant supervised centroid shift: A simple and efficient approach to visual domain adaptation. In: Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 2019. 2975-2984.
    [26] Chidlovskii B, Clinchant S, Csurka G. Domain adaptation in the absence of source domain data. In: Proc. of the 22nd ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 2016. 451-460.
    [27] Liang J, Hu D, Feng J. Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation. In: Proc. of the 37th Int’l Conf. on Machine Learning (ICML). 2020. 6028-6039.
    [28] Kim Y, Cho D, Panda P, et al. Domain adaptation without source data. arXiv: 2007.01524, 2020.
    [29] Kim Y, Cho D, Hong S. Towards privacy-preserving domain adaptation. IEEE Signal Processing Letters, 2020, 27: 1675-1679.
    [30] Li R, Jiao Q, Cao W, et al. Model adaptation: Unsupervised domain adaptation without source data. In: Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 2020. 9638-9647.
    [31] Klingner M, Termöhlen JA, Ritterbach J, et al. Unsupervised BatchNorm adaptation (UBNA): A domain adaptation method for semantic segmentation without using source domain representations. arXiv: 2011.08502, 2020.
    [32] Stan S, Rostami M. Privacy preserving domain adaptation for semantic segmentation of medical images. arXiv: 2101.00522, 2020.
    [33] Bateson M, Kervadec H, Dolz J,et al. Source-Relaxed domain adaptation for image segmentation. In: Proc. of the Int’l Conf. on Medical Image Computing and Computer Assisted Intervention (MICCAI). Part I. 2020. 490-499.
    [34] Altori C, Lathuiliére S, Sebe N, et al. SF-UDA3D: Source-free unsupervised domain adaptation for LiDAR-based 3D object detection. In: Proc. of the 8th Int’l Conf. on 3D Vision (3DV 2020). 2020. 771-780.
    [35] Li X, Chen W, Xie D, et al. A free lunch for unsupervised domain adaptive object detection without source data. arXiv: 2012.05400, 2020.
    [36] Wang D, Shelhamer E, Liu S, et al. Fully test-time adaptation by entropy minimization. arXiv: 2006.10726, 2020.
    [37] Busto PP, Iqbal A, Gall J. Open set domain adaptation for image and action recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2020, 42: 413-429.
    [38] Liang J, He R, Sun Z, et al. Exploring uncertainty in pseudo-label guided unsupervised domain adaptation. Pattern Recognition, 2019, 96.
    [39] Lee DD, George CS. Graph matching and pseudo-label guided deep unsupervised domain adaptation. In: Proc. of the Artificial Neural Networks and Machine Learning 2018—27th Int’l Conf. on Artificial Neural Networks (ICANN). Part III. Vol.11141. Rhodes, 2018. 342-352.
    [40] Muller R, Kornblith S, Hinton GE. When does label smoothing help? In: Proc. of the Advances in Neural Information Processing Systems 32: Annual Conf. on Neural Information Processing Systems (NeurIPS). 2019. 4696-4705.
    [41] Nguyen A, Yosinski J, Clune J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2015. 427-436.
    [42] Liu W, Wang X, Owens JD, et al. Energy-Based out-of-distribution detection. In: Proc. of the Advances in Neural Information Processing Systems 33: Annual Conf. on Neural Information Processing Systems (NeurIPS). 2020.
    [43] Saenko K, Kulis B, Fritz M, et al. Adapting visual category models to new domains. In: Proc. of the Computer Vision 11th European Conf. on Computer Vision (ECCV), Part IV. Vol.6314. 2010. 213-226.
    [44] Venkateswara H, Eusebio J, Chakraborty S, et al. Deep Hashing network for unsupervised domain adaptation. In: Proc. of the 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2017. 5018-5027.
    [45] Peng X, Usman B, Kaushik N, et al. VisDA: The visual domain adaptation challenge. arXiv: 1710.06924, 2018.
    [46] Deng Z, Luo Y, Zhu J. Cluster alignment with a teacher for unsupervised domain adaptation. In: Proc. of the IEEE/CVF Int’l Conf. on Computer Vision (ICCV). 2019. 9943-9952.
    [47] Xu R, Li G, Yang J, et al. Larger norm more transferable: An adaptive feature norm approach for unsupervised domain adaptation. In: Proc. of the IEEE/CVF Int’l Conf. on Computer Vision (ICCV). 2019. 1426-1435.
    [48] Chen X, Wang S, Long M, et al. Transferability vs. discriminability: Batch spectral penalization for adversarial domain adaptation. In: Proc. of the 36th Int’l Conf. on Machine Learning (ICML). 2019. 1081-1090.
    [49] Wang X, Jin Y, Long M, et al. Transferable normalization: Towards improving transferability of deep neural networks. In: Proc. of the Advances in Neural Information Processing Systems 32: Annual Conf. on Neural Information Processing Systems (NeurIPS). 2019. 1951-1961.
    [50] Saito K, Ushiku Y, Harada T, et al. Adversarial dropout regularization. In: Proc. of the 6th Int’l Conf. on Learning Representations (ICLR 2018). 2018.
    [51] Lee CY, Batra T, Baig M, et al. Sliced wasserstein discrepancy for unsupervised domain adaptation. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2019. 10285-10295.
    [52] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In: Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 2016. 770-778.
    附中文参考文献:
    [1] 刘建伟, 孙正康, 罗雄麟. 无监督域自适应学习研究进展. 自动化学报, 2014, 40(8): 1576-1600, [doi: 10.3724/SP.J.1004.2014.01576]
    [2] 范苍宁,刘鹏, 肖婷, 等. 深度域适应综述: 一般情况与复杂情况. 自动化学报, 2021, 47(3): 515-548 [doi: 10. 16383/j.aas. c200238]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王帆,韩忠义,尹义龙.伪标签不确定性估计的源域无关鲁棒域自适应.软件学报,2022,33(4):1183-1199

复制
分享
文章指标
  • 点击次数:1751
  • 下载次数: 5362
  • HTML阅读次数: 3438
  • 引用次数: 0
历史
  • 收稿日期:2021-03-10
  • 最后修改日期:2021-07-16
  • 在线发布日期: 2021-10-26
  • 出版日期: 2022-04-06
文章二维码
您是第19791524位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号