知识图谱嵌入技术研究综述
作者:
作者简介:

张天成(1969-), 男, 博士, 副教授, CCF高级会员, 主要研究领域为教育大数据, 时空数据管理;田雪(1998-), 女, 硕士生, CCF学生会员, 主要研究领域为数据挖掘, 知识发现, 知识图谱.;孙相会(1997-), 男, 硕士生, CCF学生会员, 主要研究领域为自然语言理解, 表示学习;于明鹤(1989-), 女, 博士, 讲师, CCF专业会员, 主要研究领域为数据库, 信息检索;孙艳红(1997-), 女, 硕士生, CCF学生会员, 主要研究领域为教育大数据, 知识图谱;于戈(1962-), 男, 博士, 教授, 博士生导师, CCF会士, 主要研究领域为数据库理论与技术, 区块链.

通讯作者:

田雪,E-mail:1901787@stu.neu.edu.cn

基金项目:

国家自然科学基金(U1811261, 61902055); 中央高校基本科研业务费(N180716010, N2117001)


Overview on Knowledge Graph Embedding Technology Research
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [139]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    知识图谱(KG)是一种用图模型来描述知识和建模事物之间关联关系的技术. 知识图谱嵌入(KGE)作为一种被广泛采用的知识表示方法, 其主要思想是将知识图谱中的实体和关系嵌入到连续的向量空间中, 用来简化操作, 同时保留KG的固有结构. 可以使得多种下游任务受益, 例如KG补全和关系提取等. 首先对现有的知识图谱嵌入技术进行全面回顾, 不仅包括使用KG中观察到的事实进行嵌入的技术, 还包括添加时间维度的动态KG嵌入方法, 以及融合多源信息的KG嵌入技术. 对相关模型从实体嵌入、关系嵌入、评分函数等方面进行分析、对比与总结. 然后简要介绍KG嵌入技术在下游任务中的典型应用, 包括问答系统、推荐系统和关系提取等. 最后阐述知识图谱嵌入面临的挑战, 对未来的研究方向进行展望.

    Abstract:

    Knowledge graph (KG) is a kind of technology that uses graph model to describe the relationship between knowledge and modeling things. Knowledge graph embedding (KGE), as a widely adopted knowledge representation method, its main idea is to embed entities and relationships in a knowledge graph into a continuous vector space, which is used to simplify operations while preserving the intrinsic structure of the KG. It can benefit a variety of downstream tasks, such as KG completion, relation extraction, etc. Firstly, the existing knowledge graph embedding technologies are comprehensively reviewed, including not only techniques using the facts observed in KG for embedding, but also dynamic KG embedding methods that add time dimensions, as well as KG embedding technologies that integrate multi-source information. The relevant models are analyzed, compared and summarized from the perspectives of entity embedding, relation embedding and scoring functions. Then, typical applications of KG embedding technologies in downstream tasks are briefly introduced, including question answering systems, recommendation systems and relationship extraction. Finally, the challenges of knowledge graph embedding are expounded, and the future research directions are prospected.

    参考文献
    [1] Bollacker KD, Evans C, Paritosh P, Sturge T, Taylor J. Freebase:A collaboratively created graph database for structuring human knowledge. In:Proc. of the 2008 ACM SIGMOD Int'l Conf. on Management of Data. Vancouver:Association for Computing Machinery, 2008. 1247-1250.
    [2] Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z. DBpedia:A nucleus for a Web of open data. In:Proc. of the 6th Int'l Semantic Web Conf. and the 2nd Asian Semantic Web Conf. Busan:Springer, 2007. 722-735.
    [3] Suchanek FM, Kasneci G, Weikum G. Yago:A core of semantic knowledge. In:Proc. of the 16th Int'l Conf. on World Wide Web. Banff:Association for Computing Machinery, 2007. 697-706.
    [4] Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka ER, Mitchell TM. Toward an architecture for never-ending language learning. In:Proc. of the 24th AAAI Conf. on Artificial Intelligence. Atlanta:AAAI Press, 2010. 1306-1313.
    [5] Vrandečić D, Krötzsch M. Wikidata:A free collaborative knowledgebase. Communications of the ACM, 2014, 57(10):78-85.[doi:10.1145/2629489]
    [6] Berant J, Chou A, Frostig R, Liang P. Semantic parsing on freebase from question-answer pairs. In:Proc. of the 2013 Conf. on Empirical Methods in Natural Language Processing (EMNLP). Seattle:Association for Computational Linguistics, 2013. 1533-1544.
    [7] Heck LP, Hakkani-Tür D, Tür G. Leveraging knowledge graphs for web-scale unsupervised semantic parsing. In:Proc. of the 14th Annual Conf. of the Int'l Speech Communication Association (ISCA). Lyon:Int'l Speech Communication Association, 2013. 1594-1598.
    [8] Damljanovic D, Bontcheva K. Named entity disambiguation using linked data. In:Proc. of the 9th Extended Semantic Web Conf. New York:Association for Computing Machinery, 2012. 231-240.
    [9] Zheng ZC, Si XC, Li FT, Chang EY, Zhu XY. Entity disambiguation with freebase. In:Proc. of the 2012 IEEE/WIC/ACM Int'l Conf. on Web Intelligence and Intelligent Agent Technology. Macao:IEEE Computer Society, 2012. 82-89.
    [10] Hoffmann R, Zhang CL, Ling X, Zettlemoyer L, Weld DS. Knowledge-based weak supervision for information extraction of overlapping relations. In:Proc. of the 49th Annual Meeting of the Association for Computational Linguistics:Human. Portland:Association for Computational Linguistics (ACL), 2011. 541-550.
    [11] Daiber J, Jakob M, Hokamp C, Mendes PN. Improving efficiency and accuracy in multilingual entity extraction. In:Proc. of the 9th Int'l Conf. on Semantic Systems. Graz:Association for Computing Machinery, 2013. 121-124.
    [12] Bordes A, Weston J, Usunier N. Open question answering with weakly supervised embedding models. In:Proc. of the 2014 European Conf. on Machine Learning and Knowledge Discovery in Databases. Nancy:Springer, 2014. 165-180.
    [13] Bordes A, Chopra S, Weston J. Question answering with subgraph embeddings. In:Proc. of the 2014 Conf. on Empirical Methods in Natural Language Processing (EMNLP). Doha:Association for Computational Linguistics (ACL), 2014. 615-620.
    [14] Wang Q, Mao ZD, Wang B, Guo L. Knowledge graph embedding:A survey of approaches and applications. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12):2724-2743.[doi:10.1109/TKDE.2017.2754499]
    [15] Bordes A, Usunier N, García-Durán A, Weston J, Yakhnenko O. Translating embeddings for modeling multi-relational data. In:Proc. of the 26th Int'l Conf. on Neural Information Processing Systems (NIPS). Lake Tahoe:Curran Associates Inc., 2013. 2787-2795.
    [16] Wang Z, Zhang JW, Feng JL, Chen Z. Knowledge graph embedding by translating on hyperplanes. In:Proc. of the 28th AAAI Conf. on Artificial Intelligence (AAAI). Québec City:AAAI Press, 2014. 1112-1119.
    [17] Riedel S, Yao LM, McCallum A, Marlin BM. Relation extraction with matrix factorization and universal schemas. In:Proc. of the 2013 Conf. of the North American Chapter of the Association for Computational Linguistics (NAACL). Atlanta:Association for Computational Linguistics, 2013. 74-84.
    [18] Nickel M, Tresp V, Kriegel HP. A three-way model for collective learning on multi-relational data. In:Proc. of the 28th Int'l Conf. on Machine Learning (ICML). Bellevue:Omnipress, 2011. 809-816.
    [19] Nickel M, Tresp V, Kriegel HP. Factorizing YAGO:Scalable machine learning for linked data. In:Proc. of the 21st Int'l Conf. on World Wide Web (WWW). Lyon:Association for Computing Machinery, 2012. 271-280.
    [20] Bordes A, Glorot X, Weston J, Bengio Y. A semantic matching energy function for learning with multi-relational data:Application to word-sense disambiguation. Machine Learning, 2014, 94(2):233-259.
    [21] Wang Q, Wang B, Guo L. Knowledge base completion using embeddings and rules. In:Proc. of the 24th Int'l Conf. on Artificial Intelligence (IJCAI). Buenos Aires:AAAI Press, 2015. 1859-1866.
    [22] Wei ZY, Zhao J, Liu K, Qi ZY, Sun ZY, Tian GH. Large-scale knowledge base completion:Inferring via grounding network sampling over selected instances. In:Proc. of the 24th ACM Int'l Conf. on Information and Knowledge Management (CIKM). Melbourne:Association for Computing Machinery, 2015. 1331-1340.
    [23] Guo S, Wang Q, Wang B, Wang LH, Guo L. Semantically smooth knowledge graph embedding. In:Proc. of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Int'l Joint Conf. on Natural Language Processing. Beijing:Association for Computational Linguistics (ACL), 2015. 84-94.
    [24] Xie RB, Liu ZY, Sun MS. Representation learning of knowledge graphs with hierarchical types. In:Proc. of the 25th Int'l Joint Conf. on Artificial Intelligence (IJCAI). New York:IJCAI/AAAI Press, 2016. 2965-2971.
    [25] Wang Z, Zhang JW, Feng JL, Chen Z. Knowledge graph and text jointly embedding. In:Proc. of the 2014 Conf. on Empirical Methods in Natural Language Processing (EMNLP). Doha:Association for Computational Linguistics (ACL), 2014. 1591-1601.
    [26] Zhong HP, Zhang JW, Wang Z, Wan H, Chen Z. Aligning knowledge and text embeddings by entity descriptions. In:Proc. of the 2015 Conf. on Empirical Methods in Natural Language Processing. Lisbon:Association for Computational Linguistics (ACL), 2015. 267-272.
    [27] Xie RB, Liu ZY, Jia J, Luan HB, Sun MS. Representation learning of knowledge graphs with entity descriptions. In:Proc. of the 30th AAAI Conf. on Artificial Intelligence (AAAI). Phoenix:AAAI Press, 2016. 2659-2665.
    [28] Wang ZG, Li JZ. Text-enhanced representation learning for knowledge graph. In:Proc. of the 25th Int'l Joint Conf. on Artificial Intelligence (IJCAI). New York:AAAI Press, 2016. 1293-1299.
    [29] Lin YK, Liu ZY, Luan HB, Sun MS, Rao SW, Liu S. Modeling relation paths for representation learning of knowledge bases. In:Proc. of the 2015 Conf. on Empirical Methods in Natural Language Processing (EMNLP). Lisbon:Association for Computational Linguistics (ACL), 2015. 705-714.
    [30] Guu K, Miller J, Liang P. Traversing knowledge graphs in vector space. In:Proc. of the 2015 Conf. on Empirical Methods in Natural Language Processing (EMNLP). Lisbon:Association for Computational Linguistics (ACL), 2015. 318-327.
    [31] Toutanova K, Lin V, Yih WT, Poon H, Quirk C. Compositional learning of embeddings for relation paths in knowledge base and text. In:Proc. of the 54th Annual Meeting of the Association for Computational Linguistics (ACL). Berlin:Association for Computational Linguistics (ACL), 2016. 1434-1444.
    [32] Guo S, Wang Q, Wang LH, Wang B, Guo L. Jointly embedding knowledge graphs and logical rules. In:Proc. of the 2016 Conf. on Empirical Methods in Natural Language Processing (EMNLP). Austin:Association for Computational Linguistics (ACL), 2016. 192-202.
    [33] Rocktäschel T, Singh S, Riedel S. Injecting logical background knowledge into embeddings for relation extraction. In:Proc. of the 2015 Conf. of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies (NAACL). Denver:Association for Computational Linguistics (ACL), 2015. 1119-1129.
    [34] Nickel M, Murphy K, Tresp V, Gabrilovich E. A review of relational machine learning for knowledge graphs. Proceedings of the IEEE, 2016, 104(1):11-33.[doi:10.1109/JPROC.2015.2483592]
    [35] Paulheim H. Knowledge graph refinement:A survey of approaches and evaluation methods. Semantic Web, 2017, 8(3):489-508.
    [36] Wu TX, Qi GL, Li C, Wang M. A survey of techniques for constructing Chinese knowledge graphs and their applications. Sustainability, 2018, 10(9):3245.[doi:10.3390/su10093245]
    [37] Lin YK, Han X, Xie RB, Liu ZY, Sun MS. Knowledge representation learning:A quantitative review. arXiv:1812.10901, 2018.
    [38] Yang BS, Yih WT, He XD, Gao JF, Deng L. Embedding entities and relations for learning and inference in knowledge bases. In:Proc. of the 3rd Int'l Conf. on Learning Representations (ICLR). San Diego:Int'l Conf. on Learning Representations, 2015.
    [39] Bordes A, Weston J, Collobert R, Bengio Y. Learning structured embeddings of knowledge bases. In:Proc. of the 25th AAAI Conf. on Artificial Intelligence (AAAI). San Francisco:AAAI Press, 2011. 301-306.
    [40] Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their compositionality. In:Proc. of the 26th Int'l Conf. on Neural Information Processing Systems (NIPS). Lake Tahoe:Curran Associates Inc., 2013. 3111-3119.
    [41] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. In:Proc. of the 1st Int'l Conf. on Learning Representations (ICLR). Scottsdale, 2013.
    [42] Bordes A, Glorot X, Weston J, Bengio Y. Joint learning of words and meaning representations for open-text semantic parsing. In:Proc. of the 15th Int'l Conf. on Artificial Intelligence and Statistics (AISTATS). La Palma:JMLR, 2012. 127-135.
    [43] Lin YK, Liu ZY, Sun MS, Liu Y, Zhu X. Learning entity and relation embeddings for knowledge graph completion. In:Proc. of the 29th AAAI Conf. on Artificial Intelligence (AAAI). Austin:AAAI Press, 2015. 2181-2187.
    [44] Ji GL, He SZ, Xu LH, Liu K, Zhao J. Knowledge graph embedding via dynamic mapping matrix. In:Proc. of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Int'l Joint Conf. on Natural Language Processing. Beijing:Association for Computational Linguistics (ACL), 2015. 687-696.
    [45] Nguyen DQ, Sirts K, Qu LZ, Johnson M. STransE:A novel embedding model of entities and relationships in knowledge bases. In:Proc. of the 2016 Conf. of the North American Chapter of the Association for Computational Linguistics (NAACL). San Diego:Association for Computational Linguistics (ACL), 2016. 460-466.
    [46] Ji GL, Liu K, He SZ, Zhao J. Knowledge graph completion with adaptive sparse transfer matrix. In:Proc. of the 30th AAAI Conf. on Artificial Intelligence (AAAI). Phoenix:AAAI Press, 2016. 985-991.
    [47] Fan M, Zhou Q, Chang E, Zheng TF. Transition-based knowledge graph embedding with relational mapping properties. In:Proc. of the 28th Pacific Asia Conf. on Language, Information and Computing (PACLIC). Phuket:Department of Linguistics, Chulalongkorn University, 2014. 328-337.
    [48] Xiao H, Huang ML, Hao Y, Zhu XY. TransA:An adaptive approach for knowledge graph embedding. arXiv:1509.05490, 2015.
    [49] Wang F, Sun JM. Survey on distance metric learning and dimensionality reduction in data mining. Data Mining and Knowledge Discovery, 2015, 29(2):534-564.[doi:10.1007/s10618-014-0356-z]
    [50] Feng J, Huang ML, Wang MD, Zhou MT, Hao Y, Zhu XY. Knowledge graph embedding by flexible translation. In:Proc. of the 15th Int'l Conf. on Principles of Knowledge Representation and Reasoning (KR). Cape Town:AAAI Press, 2016. 557-560.
    [51] Xie QZ, Ma XZ, Dai ZH, Hovy E. An interpretable knowledge transfer model for knowledge base completion. In:Proc. of the 55th Annual Meeting of the Association for Computational Linguistics (ACL). Vancouver:Association for Computational Linguistics (ACL), 2017. 950-962.
    [52] Qian W, Fu C, Zhu Y, Cai D, He XF. Translating embeddings for knowledge graph completion with relation attention mechanism. In:Proc. of the 27th Int'l Joint Conf. on Artificial Intelligence (IJCAI). Stockholm:IJCAI.org, 2018. 4286-4292.
    [53] Yang SH, Tian JD, Zhang HL, Yan JC, He H, Jin YH. TransMS:Knowledge graph embedding for complex relations by multidirectional semantics. In:Proc. of the 28th Int'l Joint Conf. on Artificial Intelligence (IJCAI). Macao:IJCAI.org, 2019. 1935-1942.
    [54] Ji SX, Pan SR, Cambria E, Marttinen P, Yu P. A survey on knowledge graphs:Representation, acquisition, and applications. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2):494-514.[doi:10.1109/TNNLS.2021.3070843]
    [55] Xiao H, Huang ML, Zhu XY. From one point to a manifold:Knowledge graph embedding for precise link prediction. In:Proc. of the 25th Int'l Joint Conf. on Artificial Intelligence. New York:AAAI Press, 2016. 1315-1321.
    [56] Ebisu T, Ichise R. TorusE:Knowledge graph embedding on a lie group. In:Proc. of the 32nd AAAI Conf. on Artificial Intelligence (AAAI). New Orleans:AAAI Press, 2018. 1819-1826.
    [57] He SZ, Liu K, Ji GL, Zhao J. Learning to represent knowledge graphs with Gaussian embedding. In:Proc. of the 24th ACM Int'l Conf. on Information and Knowledge Management (CIKM). Melbourne:Association for Computing Machinery, 2015. 623-632.
    [58] Xiao H, Huang ML, Zhu XY. TransG:A generative model for knowledge graph embedding. In:Proc. of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin:Association for Computational Linguistics (ACL), 2016. 2316-2325.
    [59] Griffiths TL, Ghahramani Z. The Indian buffet process:An introduction and review. The Journal of Machine Learning Research, 2011, 12:1185-1224.
    [60] Blei DM, Griffiths TL, Jordan MI. The nested Chinese restaurant process and bayesian nonparametric inference of topic hierarchies. Journal of the ACM, 2010, 57(2):7.[doi:10.1145/1667053.1667056]
    [61] Aldous DJ. Exchangeability and related topics. In:Hennequin PL, ed. École d'Été de Probabilités de Saint-Flour XIII-1983. Berlin:Springer, 1985. 1-198.
    [62] Sutskever I, Salakhutdinov R, Tenenbaum JB. Modelling relational data using bayesian clustered tensor factorization. In:Proc. of the 22nd Int'l Conf. on Neural Information Processing Systems (NIPS). Vancouver:Curran Associates Inc., 2009. 1821-1828.
    [63] Jenatton R, Le Roux N, Bordes A, Obozinski G. A latent factor model for highly multi-relational data. In:Proc. of the 25th Int'l Conf. on Neural Information Processing Systems (NIPS). Lake Tahoe:Curran Associates Inc., 2012. 3167-3175.
    [64] Carroll JD, Chang JJ. Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young" decomposition. Psychometrika, 1970, 35(3):283-319.[doi:10.1007/BF02310791]
    [65] Nickel M, Rosasco L, Poggio TA. Holographic embeddings of knowledge graphs. In:Proc. of the 30th AAAI Conf. on Artificial Intelligence (AAAI). Phoenix:AAAI Press, 2016. 1955-1961.
    [66] Trouillon T, Welbl J, Riedel S, Gaussier É, Bouchard G. Complex embeddings for simple link prediction. In:Proc. of the 33rd Int'l Conf. on Machine Learning (ICML). New York:JMLR, 2016. 2071-2080.
    [67] Hayashi K, Shimbo M. On the equivalence of holographic and complex embeddings for link prediction. In:Proc. of the 55th Annual Meeting of the Association for Computational Linguistics (ACL). Vancouver:Association for Computational Linguistics (ACL), 2017. 554-559.
    [68] Liu HX, Wu YX, Yang YM. Analogical inference for multi-relational embeddings. In:Proc. of the 34th Int'l Conf. on Machine Learning (ICML). Sydney:PMLR, 2017. 2168-2178.
    [69] Hitchcock FL. The expression of a tensor or a polyadic as a sum of products. Journal of Mathematics and Physics, 1927, 6(1-4):164-189.[doi:10.1002/sapm192761164]
    [70] Kazemi SM, Poole D. SimplE embedding for link prediction in knowledge graphs. In:Proc. of the 32nd Int'l Conf. on Neural Information Processing Systems (NIPS). Montréal:Curran Associates Inc., 2018. 4289-4300.
    [71] García-Durán A, Bordes A, Usunier N. Effective blending of two and three-way interactions for modeling multi-relational data. In:Proc. of the 2014 European Conf. on Machine Learning and Knowledge Discovery in Databases. Nancy:Springer, 2014. 434-449.
    [72] Balazevic I, Allen C, Hospedales T. TuckER:Tensor factorization for knowledge graph completion. In:Proc. of the 2019 Conf. on Empirical Methods in Natural Language Processing and the 9th Int'l Joint Conf. on Natural Language Processing (EMNLP). Hong Kong:Association for Computational Linguistics (ACL), 2019. 5185-5194.
    [73] Fan M, Zhao DL, Zhou Q, Liu ZY, Zheng TF, Chang EY. Distant supervision for relation extraction with matrix completion. In:Proc. of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL). Baltimore:Association for Computational Linguistics (ACL), 2014. 839-849.
    [74] Tresp V, Huang Y, Bundschus M, Rettinger A. Materializing and querying learned knowledge. In:Proc. of the 1st ESWC Workshop on Inductive Reasoning and Machine Learning on the Semantic Web. Heraklion:CEUR-WS, 2009.
    [75] Huang Y, Tresp V, Nickel M, Rettinger A, Kriegel HP. A scalable approach for statistical learning in semantic graphs. Semantic Web, 2014, 5(1):5-22.[doi:10.3233/SW-130100]
    [76] Dong X, Gabrilovich E, Heitz G, Horn W, Lao N, Murphy K, Strohmann T, Sun SH, Zhang W. Knowledge vault:A Web-scale approach to probabilistic knowledge fusion. In:Proc. of the 20th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD). New York:Association for Computing Machinery, 2014. 601-610.
    [77] Socher R, Chen DQ, Manning CD, Ng AY. Reasoning with neural tensor networks for knowledge base completion. In:Proc. of the 26th Int'l Conf. on Neural Information Processing Systems (NIPS). Lake Tahoe:Curran Associates Inc, 2013. 926-934.
    [78] Liu Q, Jiang H, Evdokimov A, Ling ZH, Zhu XD, Wei S, Hu Y. Probabilistic reasoning via deep learning:Neural association models. arXiv:1603.07704, 2016.
    [79] Dettmers T, Minervini P, Stenetorp P, Riedel S. Convolutional 2D knowledge graph embeddings. In:Proc. of the 32nd AAAI Conf. on Artificial Intelligence (AAAI). New Orleans:AAAI Press, 2018. 1811-1818.
    [80] Schlichtkrull M, Kipf TN, Bloem P, van den Berg R, Titov I, Welling M. Modeling relational data with graph convolutional networks. In:Proc. of the 15th Int'l Conf. on Semantic Web. Heraklion:Springer International Publishing, 2018. 593-607.
    [81] Nguyen DQ, Nguyen TD, Nguyen DQ, Phung D. A novel embedding model for knowledge base completion based on convolutional neural network. In:Proc. of the 2018 Conf. of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies (NAACL). New Orleans:Association for Computational Linguistics (ACL), 2018. 327-333.
    [82] Balažević I, Allen C, Hospedales TM. Hypernetwork knowledge graph embeddings. In:Proc. of the 28th Int'l Conf. on Artificial Neural Networks and Machine Learning (ICANN). Munich:Springer International Publishing, 2019. 553-565.
    [83] Ha D, Dai AM, Le QV. HyperNetworks. In:Proc. of the 5th Int'l Conf. on Learning Representations (ICLR). Toulon:OpenReview.net, 2017.
    [84] Sun ZQ, Deng ZH, Nie JY, Tang J. RotatE:Knowledge graph embedding by relational rotation in complex space. In:Proc. of the 7th Int'l Conf. on Learning Representations (ICLR). New Orleans:OpenReview.net, 2019.
    [85] Zhang S, Tay Y, Yao LN, Liu Q. Quaternion knowledge graph embeddings. In:Proc. of the 33rd Int'l Conf. on Neural Information Processing Systems (NIPS). Vancouver:Curran Associates Inc., 2019. 246.
    [86] Xu CR, Li RJ. Relation embedding with dihedral group in knowledge graph. In:Proc. of the 57th Annual Meeting of the Association for Computational Linguistics (ACL). Florence:Association for Computational Linguistics (ACL), 2019. 263-272.
    [87] Adcock AB, Sullivan BD, Mahoney MW. Tree-like structure in large social and information networks. In:Proc. of the 13th IEEE Int'l Conf. on Data Mining. Dallas:IEEE Computer Society, 2013. 1-10.
    [88] Nickel M, Kiela D. Poincaré embeddings for learning hierarchical representations. In:Proc. of the 31st Int'l Conf. on Neural Information Processing Systems (NIPS). Long Beach:Curran Associates Inc., 2017. 6341-6350.
    [89] Balažević I, Allen C, Hospedales T. Multi-relational poincaré graph embeddings. In:Proc. of the 33rd Int'l Conf. on Neural Information Processing Systems. Vancouver:Curran Associates Inc., 2019. 401.
    [90] Nguyen DQ, Vu T, Nguyen TD, Nguyen DQ, Phung D. A capsule network-based embedding model for knowledge graph completion and search personalization. In:Proc. of the 2019 Conf. of the North American Chapter of the Association for Computational Linguistics (NAACL). Minneapolis:Association for Computational Linguistics (ACL), 2019. 2180-2189.
    [91] Zhang W, Paudel B, Zhang W, Bernstein A, Chen HJ. Interaction embeddings for prediction and explanation in knowledge graphs. In:Proc. of the 12th ACM Int'l Conf. on Web Search and Data Mining (WSDM). Melbourne:Association for Computing Machinery, 2019. 96-104.
    [92] Jiang TS, Liu TY, Ge T, Sha L, Li SJ, Chang BB, Sui ZF. Encoding temporal information for time-aware link prediction. In:Proc. of the 2016 Conf. on Empirical Methods in Natural Language Processing (EMNLP). Austin:Association for Computational Linguistics (ACL), 2016. 2350-2354.
    [93] Trivedi R, Dai HJ, Wang YC, Song L. Know-evolve:Deep temporal reasoning for dynamic knowledge graphs. In:Proc. of the 34th Int'l Conf. on Machine Learning (ICML). Sydney:JMLR, 2017. 3462-3471.
    [94] Leblay J, Chekol MW. Deriving validity time in knowledge graph. In:Proc. of 2018 the Web Conf. Lyon:Association for Computing Machinery, 2018. 1771-1776.
    [95] García-Durán A, Dumančić S, Niepert M. Learning sequence encoders for temporal knowledge graph completion. In:Proc. of the 2018 Conf. on Empirical Methods in Natural Language Processing (EMNLP). Brussels:Association for Computational Linguistics (ACL), 2018. 4816-4821.
    [96] Dasgupta SS, Ray SN, Talukdar PP. HyTE:Hyperplane-based temporally aware knowledge graph embedding. In:Proc. of the 2018 Conf. on Empirical Methods in Natural Language Processing (EMNLP). Brussels:Association for Computational Linguistics (ACL), 2018. 2001-2011.
    [97] Tang XL, Yuan R, Li QY, Wang TY, Yang HZ, Cai YD, Song HJ. Timespan-aware dynamic knowledge graph embedding by incorporating temporal evolution. IEEE Access, 2020, 8:6849-6860.[doi:10.1109/ACCESS.2020.2964028]
    [98] 金婧, 万怀宇, 林友芳. 融合实体类别信息的知识图谱表示学习方法. 计算机工程, 2021, 47(4):77-83.[doi:10.19678/j.issn.1000-3428.0057353]
    Jin J, Wan HY, Lin YF. Knowledge graph representation learning fused with entity category information. Computer Engineering, 2021, 47(4):77-83 (in Chinese with English abstract).[doi:10.19678/j.issn.1000-3428.0057353]
    [99] Zhang DX, Yuan B, Wang D, Liu R. Joint semantic relevance learning with text data and graph knowledge. In:Proc. of the 3rd Workshop on Continuous Vector Space Models and their Compositionality. Beijing:ACL, 2015. 32-40.
    [100] Xiao H, Huang ML, Meng L, Zhu XY. SSP:Semantic space projection for knowledge graph embedding with text descriptions. In:Proc. of the 31st AAAI Conf. on Artificial Intelligence (AAAI). San Francisco:AAAI Press, 2017. 3104-3110.
    [101] An B, Chen B, Han XP, Sun L. Accurate text-enhanced knowledge graph representation learning. In:Proc. of the 2018 Conf. of the North American Chapter of the Association for Computational Linguistics (NAACL). New Orleans:Association for Computational Linguistics (ACL), 2018. 745-755.
    [102] Galárraga LA, Teflioudi C, Hose K, Suchanek FM. AMIE:Association rule mining under incomplete evidence in ontological knowledge bases. In:Proc. of the 22nd Int'l Conf. on World Wide Web (WWW). New York:Association for Computing Machinery, 2013. 413-422.
    [103] Galárraga L, Teflioudi C, Hose K, Suchanek FM. Fast rule mining in ontological knowledge bases with AMIE+. The VLDB Journal, 2015, 24(6):707-730.[doi:10.1007/s00778-015-0394-1]
    [104] Omran PG, Wang KW, Wang Z. An embedding-based approach to rule learning in knowledge graphs. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(4):1348-1359.[doi:10.1109/TKDE.2019.2941685]
    [105] Guo S, Wang Q, Wang LH, Wang B, Guo L. Knowledge graph embedding with iterative guidance from soft rules. In:Proc. of the 32nd AAAI Conf. on Artificial Intelligence (AAAI). New Orleans:AAAI Press, 2018. 4816-4823.
    [106] Niu GL, Zhang YF, Li B, Cui P, Liu S, Li JY, Zhang XW. Rule-guided compositional representation learning on knowledge graphs. In:Proc. of the 34th AAAI Conf. on Artificial Intelligence (AAAI). New York:AAAI Press, 2020. 2950-2958.
    [107] Xie RB, Liu ZY, Luan HB, Sun MS. Image-embodied knowledge representation learning. In:Proc. of the 26th Int'l Joint Conf. on Artificial Intelligence (IJCAI). Melbourne:IJCAI.org, 2017. 3140-3146.
    [108] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In:Proc. of the 25th Int'l Conf. on Neural Information Processing Systems (NIPS). Lake Tahoe:Curran Associates Inc., 2012. 1097-1105.
    [109] Feng J, Huang ML, Yang Y, Zhu XY. GAKE:Graph aware knowledge embedding. In:Proc. of the 26th Int'l Conf. on Computational Linguistics (COLING). Osaka:The COLING 2016 Organizing Committee, 2016. 641-651.
    [110] 杜文倩, 李弼程, 王瑞. 融合实体描述及类型的知识图谱表示学习方法. 中文信息学报, 2020, 34(7):50-59.[doi:10.3969/j.issn.1003-0077.2020.07.005]
    Du WQ, Li BC, Wang R. Representation learning of knowledge graph integrating entity description and entity type. Journal of Chinese Information Processing, 2020, 34(7):50-59 (in Chinese with English abstract).[doi:10.3969/j.issn.1003-0077.2020.07.005]
    [111] Tang X, Chen L, Cui J, Wei BG. Knowledge representation learning with entity descriptions, hierarchical types, and textual relations. Information Processing & Management, 2019, 55(3):809-822.[doi:10.1016/j.ipm.2019.01.005]
    [112] Yih WT, Chang MW, He XD, Gao JF. Semantic parsing via staged query graph generation:Question answering with knowledge base. In:Proc. of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Int'l Joint Conf. on Natural Language Processing. Beijing:Association for Computational Linguistics (ACL), 2015. 1321-1331.
    [113] Blanco R, Ottaviano G, Meij E. Fast and space-efficient entity linking for queries. In:Proc. of the 8th ACM Int'l Conf. on Web Search and Data Mining (WSDM). Shanghai:Association for Computing Machinery, 2015. 179-188.
    [114] Pappu A, Blanco R, Mehdad Y, Stent A, Thadani K. Lightweight multilingual entity extraction and linking. In:Proc. of the 10th ACM Int'l Conf. on Web Search and Data Mining (WSDM). Cambridge:Association for Computing Machinery, 2017. 365-374.
    [115] Bordes A, Usunier N, Chopra S, Weston J. Large-scale simple question answering with memory networks. arXiv:1506.02075, 2015.
    [116] Yang MC, Duan N, Zhou M, Rim HC. Joint relational embeddings for knowledge-based question answering. In:Proc. of the 2014 Conf. on Empirical Methods in Natural Language Processing (EMNLP). Doha:Association for Computational Linguistics (ACL), 2014. 645-650.
    [117] Yang MC, Lee DG, Park SY, Rim HC. Knowledge-based question answering using the semantic embedding space. Expert Systems with Applications, 2015, 42(23):9086-9104.[doi:10.1016/j.eswa.2015.07.009]
    [118] Dai ZH, Li L, Xu W. CFO:Conditional focused neural question answering with large-scale knowledge bases. In:Proc. of the 54th Annual Meeting of the Association for Computational Linguistics (ACL). Berlin:Association for Computational Linguistics (ACL), 2016. 800-810.
    [119] Dong L, Wei FR, Zhou M, Xu K. Question answering over freebase with multi-column convolutional neural networks. In:Proc. of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Int'l Joint Conf. on Natural Language Processing. Beijing:Association for Computational Linguistics (ACL), 2015. 260-269.
    [120] Hao YC, Zhang YZ, Liu K, He SZ, Liu ZY, Wu H, Zhao J. An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge. In:Proc. of the 55th Annual Meeting of the Association for Computational Linguistics (ACL). Vancouver:Association for Computational Linguistics (ACL), 2017. 221-231.
    [121] Lukovnikov D, Fischer A, Lehmann J, Auer S. Neural network-based question answering over knowledge graphs on word and character level. In:Proc. of the 26th Int'l Conf. on World Wide Web (WWW). Perth:ACM, 2017. 1211-1220.
    [122] Yin WP, Yu M, Xiang B, Zhou BW, Schütze H. Simple question answering by attentive convolutional neural network. In:Proc. of the 26th Int'l Conf. on Computational Linguistics:Technical Papers. Osaka:The COLING 2016 Organizing Committee, 2016. 1746-1756.
    [123] Huang X, Zhang JY, Li DC, Li P. Knowledge graph embedding based question answering. In:Proc. of the 12th ACM Int'l Conf. on Web Search and Data Mining (WSDM). Melbourne:Association for Computing Machinery, 2019. 105-113.
    [124] Di Noia T, Ostuni VC, Tomeo P, Di Sciascio E. SPrank:Semantic path-based ranking for top-N recommendations using linked open data. ACM Transactions on Intelligent Systems and Technology, 2017, 8(1):9.[doi:10.1145/2899005]
    [125] Yu X, Ren X, Sun YZ, Gu QQ, Sturt B, Khandelwal U, Norick B, Han JW. Personalized entity recommendation:A heterogeneous information network approach. In:Proc. of the 7th ACM Int'l Conf. on Web Search and Data Mining (WSDM). New York:Association for Computing Machinery, 2014. 283-292.
    [126] Catherine R, Cohen W. Personalized recommendations using knowledge graphs:A probabilistic logic programming approach. In:Proc. of the 10th ACM Conf. on Recommender Systems (RecSys). Boston:Association for Computing Machinery, 2016. 325-332.
    [127] Ostuni VX, Di Noia T, Mirizzi R, Di Sciascio E. Top-N recommendations from implicit feedback leveraging linked open data. In:Proc. of the 5th Italian Information Retrieval Workshop (IIR). Roma:CEUR-WS, 2014. 20-27.
    [128] Palumbo E, Rizzo G, Troncy R. entity2rec:Learning user-item relatedness from knowledge graphs for Top-N item recommendation. In:Proc. of the 11th ACM Conf. on Recommender Systems (RecSys). Como:Association for Computing Machinery, 2017. 32-36.
    [129] Zhang FZ, Yuan NJ, Lian DF, Xie X, Ma WY. Collaborative knowledge base embedding for recommender systems. In:Proc. of the 22nd ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD). San Francisco:Association for Computing Machinery, 2016. 353-362.
    [130] Wang HW, Zhang FZ, Xie X, Guo MY. DKN:Deep knowledge-aware network for news recommendation. In:Proc. of the 2018 Conf. on World Wide Web. Lyon:Association for Computing Machinery, 2018. 1835-1844.
    [131] Wang HW, Zhang FZ, Zhao M, Li WJ, Xie X, Guo MY. Multi-task feature learning for knowledge graph enhanced recommendation. In:Proc. of the 2019 Conf. on World Wide Web (WWW). San Francisco:Association for Computing Machinery, 2019. 2000-2010.
    [132] Ai QY, Azizi V, Chen X, Zhang YF. Learning heterogeneous knowledge base embeddings for explainable recommendation. Algorithms, 2018, 11(9):137.[doi:10.3390/a11090137]
    [133] Chowdhury G, Srilakshmi M, Chain M, Sarkar S. Neural factorization for offer recommendation using knowledge graph embeddings. In:Proc. of the SIGIR 2019 Workshop on eCommerce, Co-located with the 42nd Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. Paris:CEUR-WS, 2019.
    [134] Sha X, Sun Z, Zhang J. Hierarchical attentive knowledge graph embedding for personalized recommendation. arXiv:1910.08288, 2019.
    [135] Ni CC, Liu KS, Torzec N. Layered graph embedding for entity recommendation using wikipedia in the Yahoo! Knowledge graph. In:Proc. of the 2020 Companion of the Web Conf. Taipei:ACM, 2020. 811-818.
    [136] Zelenko D, Aone C, Richardella A. Kernel methods for relation extraction. The Journal of Machine Learning Research, 2003, 3:1083-1106.
    [137] Zeng DJ, Liu K, Lai SW, Zhou GY, Zhao J. Relation classification via convolutional deep neural network. In:Proc. of the 25th Int'l Conf. on Computational Linguistics (COLING). Dublin:Association for Computational Lin
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张天成,田雪,孙相会,于明鹤,孙艳红,于戈.知识图谱嵌入技术研究综述.软件学报,2023,34(1):277-311

复制
分享
文章指标
  • 点击次数:7928
  • 下载次数: 12813
  • HTML阅读次数: 6743
  • 引用次数: 0
历史
  • 收稿日期:2021-03-29
  • 最后修改日期:2021-06-28
  • 在线发布日期: 2021-10-20
  • 出版日期: 2023-01-06
文章二维码
您是第20251802位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号